• Title/Summary/Keyword: Active contour algorithms

Search Result 27, Processing Time 0.029 seconds

Segmentation of Medical Images Using Active Contour Models and Genetic Alogorithms (Active Contour Model과 유전 알고리즘을 이용한 의료 영상 분할)

  • 이성기
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.5
    • /
    • pp.457-467
    • /
    • 2000
  • In this paper, we propose the method to extract the anatomical objects in medical images using active contour models and genetic algorithms. The performance of active contour models is mostly decided by the optimization of active contour model's energy. So, we propose to use genetic algorithms to optimize the energy of active contour models. We experimented our proposed method on the femoral head medical images and proved that our method provides very acceptable results from any initialization of active contour models.

  • PDF

A Comparison of Active Contour Algorithms in Computer-aided Detection System for Dental Cavity using X-ray Image (X선 영상 기반 치아와동 컴퓨터 보조검출 시스템에서의 동적윤곽 알고리즘 비교)

  • Kim, Dae-han;Heo, Chang-hoe;Cho, Hyun-chong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.12
    • /
    • pp.1678-1684
    • /
    • 2018
  • Dental caries is one of the most popular oral disease. The aim of automatic dental cavity detection system is helping dentist to make accurate diagnosis. It is very important to separate cavity from the teeth in the detection system. In this paper, We compared two active contour algorithms, Snake and DRLSE(Distance Regularized Level Set Evolution). To improve performance, image is selected ROI(region of interest), then applied bilateral filter, Canny edge. In order to evaluate the algorithms, we applied to 7 tooth phantoms from incisor to molar. Each teeth contains two cavities of different shape. As a result, Snake is faster than DRLSE, but Snake has limitation to compute topology of objects. DRLSE is slower but those of performance is better.

The preprocessing effect using K-means clustering and merging algorithms in cardiac left ventricle segmentation

  • Cho, Ik-Hwan;Do, Ki-Bum;Oh, Jung-Su;Song, In-Chan;Chang, Kee-Hyun;Jeong, Dong-Seok
    • Proceedings of the KSMRM Conference
    • /
    • 2002.11a
    • /
    • pp.126-126
    • /
    • 2002
  • Purpose: For quantitative analysis of the cardiac diseases, it is necessary to segment the left-ventricle(LV) in MR cardiac images. Snake or active contour model has been used to segment LV boundary. In using these models, however, the contour of the LV may not converge to the desirable one because the contour may fall into local minimum value due to image artifact in inner region of the LV Therefore, in this paper, we propose the new preprocessing method using K-means clustering and merging algorithms that can improve the performance of the active contour model.

  • PDF

Active Contour Model for Boundary Detection of Multiple Objects (복수 객체의 윤곽 검출 방법에 대한 능동윤곽모델)

  • Jang, Jong-Whan
    • The KIPS Transactions:PartB
    • /
    • v.17B no.5
    • /
    • pp.375-380
    • /
    • 2010
  • Most of previous algorithms of object boundary extraction have been studied for extracting the boundary of single object. However, multiple objects are much common in the real image. The proposed algorithm of extracting the boundary of each of multiple objects has two steps. In the first step, we propose the fast method using the outer and inner products; the initial contour including multiple objects is split and connected and each of new contours includes only one object. In the second step, an improved active contour model is studied to extract the boundary of each object included each of contours. Experimental results with various test images have shown that our algorithm produces much better results than the previous algorithms.

Preprocessing Effect by Using k-means Clustering and Merging .Algorithms in MR Cardiac Left Ventricle Segmentation (자기공명 심장 영상의 좌심실 경계추출에서의 k 평균 군집화와 병합 알고리즘의 사용으로 인한 전처리 효과)

  • Ik-Hwan Cho;Jung-Su Oh;Kyong-Sik Om;In-Chan Song;Kee-Hyun Chang;Dong-Seok Jeong
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.55-60
    • /
    • 2003
  • For quantitative analysis of the cardiac diseases. it is necessary to segment the left-ventricle (LY) in MR (Magnetic Resonance) cardiac images. Snake or active contour model has been used to segment LV boundary. However, the contour of the LV front these models may not converge to the desirable one because the contour may fall into local minimum value due to image artifact inside of the LY Therefore, in this paper, we Propose the Preprocessing method using k-means clustering and merging algorithms that can improve the performance of the active contour model. We verified that our proposed algorithm overcomes local minimum convergence problem by experiment results.

Unscented Kalman Snake for 3D Vessel Tracking

  • Lee, Sang-Hoon;Lee, Sanghoon
    • Journal of International Society for Simulation Surgery
    • /
    • v.2 no.1
    • /
    • pp.17-25
    • /
    • 2015
  • Purpose In this paper, we propose a robust 3D vessel tracking algorithm by utilizing an active contour model and unscented Kalman filter which are the two representative algorithms on segmentation and tracking. Materials and Methods The proposed algorithm firstly accepts user input to produce an initial estimate of vessel boundary segmentation. On each Computed Tomography Angiography (CTA) slice, the active contour is applied to segment the vessel boundary. After that, the estimation process of the unscented Kalman filter is applied to track the vessel boundary of the current slice to estimate the inter-slice vessel position translation and shape deformation. Finally both active contour and unscented Kalman filter are inter-operated for vessel segmentation of the next slice. Results The arbitrarily shaped blood vessel boundary on each slice is segmented by using the active contour model, and the Kalman filter is employed to track the translation and shape deformation between CTA slices. The proposed algorithm is applied to the 3D visualization of chest CTA images using graphics hardware. Conclusion Through this algorithm, more opportunities, giving quick and brief diagnosis, could be provided for the radiologist before detailed diagnosis using 2D CTA slices, Also, for the surgeon, the algorithm could be used for surgical planning, simulation, navigation and rehearsal, and is expected to be applied to highly valuable applications for more accurate 3D vessel tracking and rendering.

Video Segmentation using the Level Set Method (Level Set 방법을 이용한 영상분할 알고리즘)

  • 김대희;호요성
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.5
    • /
    • pp.303-311
    • /
    • 2003
  • Since the MPEG-4 visual standard enables content-based functionalities, it is necessary to extract video object from natural video sequences. Segmentation algorithms can largely be classified into automatic segmentation and user-assisted segmentation. In this paper, we propose a user-assisted VOP generation method based on the geometric active contour. Since the geometric active contour, unlike the parametric active contour, employs the level set method to evolve the curve, we can draw the initial curve independent of the shape of the object. In order to generate the edge function from a smoothed image, we propose a vector-valued diffusion process in the LUV color space. We also present a discrete 3-D diffusion model for easy implementation. By combining the curve shrinkage in the vector field space with the curve expansion in the empty vector space, we can make accurate extraction of visual objects from video sequences.

Research on the Tracking Algorithm applied by Active Contour Models (Active Contour Model을 응용한 추적 알고리즘에 관한 연구)

  • 장재혁;한성현;이만형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.295-298
    • /
    • 1995
  • We performed a research to improve the performance of active bar model which is used in tracking algorithm. Active bar model is a simplified model of snake model. If we used the sctive bar model, the numerical procedure for real time tracking problem can be carried out faster than snake model. However the demerit of active bar algorithms is that we can't used the provious image data because each time it has to reconstruct the active bar. In this paper we proposed advanced algorithm for active bar model. The proposed model can improve tracking abilities by preserving the active bar during the process and changing the energy functional.

  • PDF

Tracking of Continuously Acting Hearts Using a Geometric Active Contour Model (기하 활성 모델을 이용한 연속적 심장 운동 추적)

  • 김성곤
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.4
    • /
    • pp.17-22
    • /
    • 2002
  • This paper used an active contour model which was based on level set algorithms and bidirectional curve evolution theory in order to track the shape of the heart acting continuously. Most active contour models would be failed in boundary extraction because of their unstable movement in the edge gap locations. In this paper, we suggest a new active contour model using only image intensity value and additional constraint needed for stable extraction. Our model was successfully run on either shape extraction or object tracking without any position constraints of initial curve. Also demonstrated stable movements and showed good results at weak or missing boundary locations.

  • PDF

Active Contours Level Set Based Still Human Body Segmentation from Depth Images For Video-based Activity Recognition

  • Siddiqi, Muhammad Hameed;Khan, Adil Mehmood;Lee, Seok-Won
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2839-2852
    • /
    • 2013
  • Context-awareness is an essential part of ubiquitous computing, and over the past decade video based activity recognition (VAR) has emerged as an important component to identify user's context for automatic service delivery in context-aware applications. The accuracy of VAR significantly depends on the performance of the employed human body segmentation algorithm. Previous human body segmentation algorithms often engage modeling of the human body that normally requires bulky amount of training data and cannot competently handle changes over time. Recently, active contours have emerged as a successful segmentation technique in still images. In this paper, an active contour model with the integration of Chan Vese (CV) energy and Bhattacharya distance functions are adapted for automatic human body segmentation using depth cameras for VAR. The proposed technique not only outperforms existing segmentation methods in normal scenarios but it is also more robust to noise. Moreover, it is unsupervised, i.e., no prior human body model is needed. The performance of the proposed segmentation technique is compared against conventional CV Active Contour (AC) model using a depth-camera and obtained much better performance over it.