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Introduction 

Via the rapid development of current image processing tech-
nologies based on image segmentation, tissue characterization 
and image registration, various medical technology fields, such 
as diagnosis decision and therapy planning, are working to-
ward a common platform of medical image processing. Even 
the area of vessel tracking is following this trend. As a result, 
vessel tracking methods for different human organs have been 
proposed by developing application oriented image processing 
algorithms based on a common platform. However, the size of 
data needing to be manipulated is growing remarkably due to 
advances in image acquisition technology, as well as clinical 
requirements. In addition, the expectations for diagnostic ac-
curacy are higher in line with the larger number of applica-
tions utilizing image processing. For this reason, it is necessary 
to develop image processing algorithms to achieve such basic 
requirements in terms of robustness, precision, and reproduc-

ibility. Moreover, to apply developed algorithms in the field, it 
is important to have an accessible user interface and timing 
synchronization performance in parallel with performance ac-
curacy (1).

In conventional research, there are two types of vessel seg-
mentations: the model-based approach (2-4) and the tracking-
based approach (5, 6). In the model-based approach, segmenta-
tion is achieved by using content information such as the 
pattern and shape of the target objects. This approach is very 
effective to track an object even if it has a slight deformation or 
variation in translation, rotation, or magnification, as opposed 
to a radical structural deformation. For the model-based ap-
proach, the most representative approach is an active contour 
algorithm (7). The algorithm, also called snake, creates its con-
tour from the initial contour created by user input to the target 
object by deforming the shape of the contour. This algorithm 
has demonstrated good performance in 2D object segmenta-
tion, but proper segmentation in a 3D environment is not com-
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mon. Furthermore, it is difficult to apply this algorithm directly 
to the tracking of drastic shape changes in a vessel boundary.

On the other hand, the tracking-based approach segments 
and tracks each vessel by applying a local operator around the 
vessel. At the first Computed Tomography/Magnetic Reso-
nance Imaging (CT/MRI) slice, it detects the centerline or bound-
ary of the vessel. This tracking is then performed consecutively 
for the following slices based on the initial detection at the first 
slice. This method makes it possible to reduce user interven-
tion and consequently leads to a considerable decrease in com-
putation cost after the initial segmentation. In the tracking-based 
approach, the most commonly used method is the Kalman fil-
ter algorithm. This algorithm consists of a series of tracking states 
defined by using a linear state-space model. It is also available 
to track the structure of a vessel in a 3D environment because 
the state-space model can be applied to track the shape varia-
tion of the vessel boundary between slices. However, it is easy 
to fail to segment the vessel because of the ambiguous bound-
ary of vessels when they are adjacent to the bone, which in turn 
leads to a failure to trace the vessel for the subsequent slices due 
to the propagation of such improper segmentation. Moreover, 
since the shape variation between slices has a non-linear char-
acteristic, the Kalman filter hardly obtains a proper result due 
to its linear state-space model. To overcome this problem, vari-
ous extensions of the Kalman filter have been devised to track 
such nonlinear systems - extended and unscented Kalman and 
particle filters (8-12). In an unscented Kalman (UKF), the prob-

lem is resolved using the nonlinear model directly without lin-
earizing it with specific points selected through the probabilis-
tic distribution of estimated values (11).

In this paper, we present a scheme named the unscented Kal-
man snake for vessel tracking by taking advantage of both mod-
el-based and tracking based approaches, which allows a resil-
ience for shape deformation and a reduction in user intervention. 
Based on these two approaches, we sought to develop a unique 
algorithm incorporating the active contours and unscented 
Kalman filter schemes. First, we employ an active contour model 
for initializing the vessel boundary. The estimation process of 
the unscented Kalman filter is then applied to track the vessel 
boundary of the first slice to estimate the inter-slice vessel po-
sition translation and the shape deformation. Finally, both pro-
cesses are inter-operated so as to perform vessel segmentation 
for the next slice.

The layout of the paper is as follows: Section II provides ma-
terials and methods, and results are given in section III. Dis-
cussion and conclusions are presented in sections IV and V re-
spectively.

Materials and Methods

Motivation
In this paper, we present a vessel tracking algorithm by uti-

lizing snake for finding the contour of a vessel in each intra slice 
and the unscented Kalman filter for finding the 3D blood ves-

Fig. 1. Outline of the vessel track-
ing system: the solid line is the ves-
sel boundary and the dotted line is 
the estimated boundary. A: Classi-
cal Kalman filter only. B: Active con-
tour model only.
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sel among the inter slices, and attempt to take advantage of com-
bining the two algorithms to overcome the drawbacks of each 
method.

Generally, the attributes of the contour include the centroid 
and the major and minor axes of an ellipse. However, if the un-
scented Kalman filter is used alone, it is difficult to accurately 
track an irregular shape variation of the boundary. Fig. 1A shows 
that the boundary obtained by the unscented Kalman filter 
(dotted line) is not tightly matched with the vessel boundary.

Moreover, the snake has the ability to segment the irregular 
shape of a boundary more accurately than the unscented Kal-
man filter. However, if the snake is solely applied to tracking, 
the contour cannot evolve because the algorithm does not con-
sider the shape variation between two consecutive slices. In 
other words, without any information of the inter-slice shape 
variation, the algorithm has no choice but to track the current 
slice from the detected positions of the previous slice. Thus, if 
the shape of the boundary changes rapidly, it is difficult to seg-
ment the boundary of the current slice, despite successful seg-
mentation in the previous slice. This situation is described well 
in Fig. 1B, where the dotted line for the snake does not tightly 
follow the vessel boundary. The kth slice in Fig. 1B illustrates 
that the upper right part of the contour is adequately segment-
ed in conjunction with the boundary of vessel, but the lower 
left part of the contour is not. The reason for the improper seg-
mentation of the lower left part arises from the distance between 
the starting position of the snake and the vessel boundary. In 
case of the upper right image, the initial position is close to the 
boundary for the snake iteration, but the lower left is quite far 
from the boundary, resulting in a condensation of the curve due 
to the internal elastic force of the snake.

For realization of snake, the intrinsic parameters including 
the tension and rigidity of contour, pixel intensity, edge inten-
sity, etc. can be used to track the shape deformation between 
CTA slices of the blood vessel. Similarly, to track the nonlinear 
variation of its shape deformation and the global motion of the 
vessel boundary between slices, the unscented Kalman filter is 
employed for stable result of the algorithm. In addition, the ves-
sel contour obtained by using snake is re-sampled as the discrete 
version, which is then used as the state and measurement vec-
tor for the tracking system. This sampling process makes it pos-
sible to reduce the dimension of the state vector, which leads to 
a decrease in the computational cost.

Fig. 2 shows the schematic diagram of the proposed vessel 
tracking algorithm composed of the initialization and iteration 
processes. The initialization is conducted by using a series of 
processes: (a) For the first slice, L points input through the user 
interface are entered to construct a point set and are constrained 

to be located around the vessel boundary; (b) The points are 
interpolated to produce the initial control point set; (c) The first 
vessel boundary estimated by using the point set is obtained by 
using snake for the first slice. When the initialization process 
for the first slice is complete, the iteration process, which is a 
main process of the tracking procedure, is continued; (d) It 
then generates a state vector for the unscented Kalman filter by 
resampling the control points at the vessel boundary obtained 
from the k-1th slice. This state vector is used as an initial vector 
for the kth slice as an input vector for the procedure of (e); (e) 
Finally, the algorithm segments the vessel boundary for the kth 
slice by applying snake and the unscented Kalman filter and then 
obtains control points at the vessel boundary of the k-1th slice.

Backgrounds

Active Contour, Snake
The active contour model (7), (13), also known as snake, has 

been widely used for finding the boundary of an object in the 
field of computer visioning or image processing. The snake 

Fig. 2. Schematic diagram of the unscented Kalman snake for 3D 
vessel tracking.
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scheme firstly accepts a user input, called control points, which 
can be used as the initial points of the snake iteration. Then the 
initial points are interpolated to form an initial contour. Through 
snake algorithm, the initial contour around the object moves 
elastically toward the boundary of the target object, while shrink-
ing its shape fitting to the shape of the target object by minimiz-
ing its own energy function. Conceptually, the energy function 
defined in Snake has an analogous meaning to the energy used 
in the laws of physics so that snake transforms its shape by con-
trolling the energy function, and the prefix ‘active’ indicates 
that the contour evolves its shape toward minimizing its energy. 
Relying on the definition of the energy function, Snake can have 
variable characteristics, including smoothness and circularity.

The energy function Esnake can be formulated as a summa-
tion of two energy terms, internal energy (Eint) for the intrinsic 
property of the curve itself and external energy (Eext) for the im-
age difference between the curve and the background image:

Esnake =Eint+Eext (1)

For example, the intrinsic property is like the length or cur-
vature of the curve, and the image difference represents the 
structural difference between the curve and the background 
image, such as edge or additional constraints added by an exter-
nal user.

Internal Energy and Force
The internal energy of snake corresponds to the intrinsic en-

ergy of the curve itself. For realization of snakes, an arbitrary 
curve is utilized to determine the contour of the vessel by chang-
ing the shape of the curve fitting into that of the contour of the 
vessel. If we want to make the curve more elastic, like a rubber 
band, an additional term can simply be added to show that the 
internal energy also relies on the length of the curve. In addi-
tion, if we want to control the smoothness of the shape, anoth-
er energy term should be added to the internal energy. 

Mathematically, the elasticity (the former) and the smooth-
ness (the latter) can be controlled by utilizing the magnitudes 
of the first-order and second-order derivatives, respectively. 
Let v(s)=((x(s), y(s)), 0≤s≤1, be the curve to be designed. The 
internal energy of snake then becomes

  (2)

where α(s) and β(s)  are control parameters regarding the con-
tribution of each variable obtained from the first- and second-
order derivatives to the internal energy. Greater α(s) influences 

on the elasticity of the contour between consecutive iterations, 
representing an effect of increasing or decreasing its circumfer-
ence. Similarly, a higher β(s) forces the contour to have a smooth-
er shape. Numerically, the continuous integral of (2) can be ap-
proximated to the discrete sum utilizing L control points as:

 

 (3)

where v0-vL · 
In snake, the contour is forced to deform its shape and size to-
ward the direction of force to minimize the energy in (3) at each 
iteration. Based on the laws of physics, the direction and mag-
nitude of force applied at each iteration can be obtained by differ-
entiating the energy function by the displacement term of vi-vi-1.

External Energy and Force
In the snake energy function, there is another energy termed 

external energy, which indicates the energy between snake and 
the background image. If we want to extend the contour into the 
brighter boundary of an object, the external energy function 
needs to be designed based on the image’s gray values I (xi, yi) 
on the control point (xi, yi). If we hang snake on the bright 
boundary pixels of an object in the background image, the ex-
ternal energy function should be designed based on the image’s 
gray values I (xi, yi) on the control point (xi, yi). Moreover, to fit 
the contour to the edge of the image, an energy term regarding 
the image gradient    I (xi, yi) needs to be added. Based on the 
two aforementioned energy terms, the external energy of the 
contour including the two energy terms becomes:

  (4)

where Wline and Wedge are adjustable constants controlling the 
contribution of each energy type.

Snake Evolution Equation
The contour varies its size and shape through the combina-

tion of the internal and external forces on each control point. By 
utilizing the forces defined in the previous section, the contour 
evolution from step k-1 to k can be defined as

  (5)

where ε is the step size, xk=(x1, x2, …, xL)T
k , E(xk)=(E1, E2, …, 

EL)  and Ei=Eint,i+Eext,i .

Δ
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Unscented Kalman Filter
The Kalman filter has a structure consisting of the following 

processes. First, the estimation of the current state and the mea-
surement are obtained by using the physical dynamics and the 
measurement model. Next, the Kalman gain which minimizes 
the estimation error is obtained by calculating the actual mea-
surement. Finally, the gain is used to revise the estimated mea-
surement to get a more accurate estimation of the current state. 
In the case of nonlinear dynamics, the Kalman filter can be ex-
tended as a nonlinear tracker by linearizing the nonlinearity 
within a certain measurement domain. This process is called 
the Extended Kalman Filter (EKF), and has been widely used 
because of its rapid processing time and satisfactory accuracy. 
EKF uses the first term of the Taylor expansion of the nonlin-
ear dynamics equation. However, in the case of strong nonlin-
earity of dynamics and/or a large initial estimation error, this 
linearization of a nonlinear model may not guarantee stability 
(12). Therefore, the Unscented Kalman Filter (UKF) is designed 
to compensate for this linearization problem using the nonlin-
ear model directly without linearizing it with specific points se-
lected through the probabilistic distribution of estimated val-
ues (11).

Unlike EKF, UKF does not use the approximation of the 
nonlinear state-space model and exploits the nonlinear model 
directly. In UKF, the distribution of state is represented by using 
a Gaussian random variable. However, UKF denotes certain 
points called sigma points, which are obtained by using the 
mean and covariance of the distribution. The sigma points are 
used to proceed with time and measurement updates. By direct-
ly using the nonlinear model, UKF may overcome the problem 
of EKF resulting from linearization, regardless of high order 
terms in the Taylor expansion (12).

UKF uses an unscented transformation to solve the problem 
caused by the linearization process of EKF. UKF selects specif-
ic points based on the probabilistic distribution and applies 
them to directly the nonlinear model. This transformation is 
the core algorithm of UKF. Unscented transformation is a meth-
od for calculating the statistics of a random variable in nonlinear 
transformation and is based on the approximation of the dis-
tribution of the random variable (10).

Assume that a random variable x, (L×1)is propagated using 
a nonlinear propagation function f(·) as y=f(x). If the mean 
and covariance of the random variable x are given by x-  and Px, 
respectively, the 2L+1 sigma points xi and their weights Wi are 
decided as:

  (6)

where k is a scale parameter, Wi is the weight of the ith ith sigma 

point and  is the ith column of the matrix square 

root. Based on the sigma points, it is possible to obtain the statis-
tics of y. Each sigma point is propagated through the nonlinear 
function f as ψi=f(xi). Then, the estimated mean and covariance 
of the propagated sigma points becomes:

  (7)

The mean and the covariance calculated by using (7) have 
an accuracy up to the second term of the Taylor expansion for an 
arbitrary nonlinear function f(x) compared to the first term in 
EKF (8). In addition, the amount of error can be adjusted by 
controlling the value of k.

In using the UKF, it is most important to determine sigma 
points in the unscented transformation. Nevertheless, it is no-
ticeable that the probability of selecting sigma points in (6) de-
viated from the original mean and covariance is also increased 
as the dimension L of the state vector x is increased. This makes 
it difficult to maintain the original state distribution. In partic-
ular, in the case of high nonlinear function, the probability in-
creases. To overcome this problem, it is necessary to choose the 
value of κ very carefully so as to not be deviated from the distri-
bution of original sigma points.

Unscented Kalman Snake 
for Vessel Tracking

State-Space Model
The alteration of the cross section of a blood vessel over the 

inter-slices can be separated into two parts. One is global rigid 
motion and the other is shape deformation changing over its 
cross-section (14). The global rigid motion can be thought of as 
a translation of the centroid, and the deformation can be ex-
plained by a deformation function as described by the snake. 
Therefore, we suggest a tracking method by taking advantage 
of UKF and the snake over the cross-section of a blood vessel 
between slices. To achieve this, we composed the state vector of 
the centroid of the vessel contour, xm, (2×1), and the control 
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point vector of snake, xc, (2L×1). In other words, the state vec-
tor at time step t is composed of xt=(Xm

T, Xc
T) t

T. Meanwhile, the 
measurement vector yt for the observation space model is com-
posed of centroid ym and control points yc, namely yt=(Ym

T, Yc
T) t

T. 
The respective covariance matrices of a priori and a posteriori 
estimates are:

  (8)

where P and Pyy are the (2×2) covariance matrix for the cen-
troid coordinate, and Σ and Σyy are the (2L×2L) diagonal ma-

trices. The process noise covariance matrix Q and the measure-
ment noise covariance matrix R are assumed to be constants as:

Q = diag(QX, QΣ), and R=diag(RX, RΣ).  (9)

Measurement Model
At time step t, the nonlinear measurement function h accepts 

the seed point Xk whose dimension is 2M+2 and the image Ik 
as an input. The function is composed as follows.

1) A closed contour h is created through the two-dimension-
al interpolation of M control points.

2) An evolved closed contour is obtained by using the snake 
iterations. The number of iterations can vary depending on the 
contour shape.

3) The evolved contour is re-sampled, and new control points 
are generated. Based on these points, a new centroid is also cal-
culated.

The measurement function h(Xk, Ik) has high nonlinearity 
because of snakes, which is the primary reason for using UKF 
instead of the classical Kalman filter.

Fig. 3. Schematic diagram of the unscented Kalman snake for 
vessel tracking - Initialization (A) Input point set. (B) Interpolated 
input points. (C) After Snake iteration.

A B C

1st slice

Snake iterationInterpolation

Input point set Initial estimate

Fig. 4. Schematic diagram of the unscented Kalman snake for vessel tracking - Iteration (A) State prediction. (B) Snake iteration for sig-
ma points. C: Measurement estimation. D: Measurement update. 
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Algorithm
Based on the aforementioned processes, the algorithm can 

be summarized as:
• Initialization - first slice
1)  points around the vessel boundary for tracking are taken 

from the user in Fig. 3A.
2) L points are interpolated in Fig. 3B.
3) Interpolated points are accepted as input from the snake 

iterations, and an estimate of the vessel boundary is obtained 
for the first slice by the snake iterations in Fig. 3C.
• Iteration kth slice
1) Based on the estimate of the k−1th slice, state vectors are 

propagated by using the state-space model. The predicted state 
of the kth slice is obtained and depicted as point ‘x’ in Fig. 4A.

2) A control point set of 2L+1 sigma points and their corre-
sponding weights are generated by using the result from the es-
timate of the k−1th slice. After this, each sigma point undergoes 
the three operations - interpolation, snake iteration, and resa-
mpling.

3) The estimate of the k−1th slice is interpolated, and the re-
sult is processed by the snake iteration. This result is from the 
result for the estimate of the vessel boundary of the kth slice. Next, 
for the measurement update process for the Kalman filter, the 
state vector for the actual measurement is created through resa-
mpling. This process is shown in Fig. 4C.

4) Afterward, the covariance matrix and the Kalman gain 
are calculated. In addition, the estimated state vector for the 
kth slice is obtained by the measurement update process of the 
Kalman filter. This process is shown in Fig. 4D.

Results

We demonstrate the simulation results for the artery track-
ing applied using chest CT slices. The test slices are CTA images 
of a chest and are composed of 467 images having a 512× 512 
resolution. The CTA images were obtained with a Discovery 
CT750 HD of General Electric Company. For the performance 
verification, the segmented results of a blood vessel were dem-
onstrated over multiple CTA slices. To obtain the measurement 
prediction and the actual measurement, each process conduct-
ed 15 snake iterations.

To utilize the snake algorithm, the parameters for the inter-
nal and external energies in (3) and (4) need to be decided. The 
related parameters are αi and βi in (3) for the internal energy 
and wline and wedge in (4) for the external energy. To simplify the 
experiment, we use α=αi and β=βi for .

Internal Parameters
By varying the values of α and β, the shape variation of the 

contours are examined for the same user input and iteration 
number to determine the appropriate values of α and β for the 
simulation. The values of and vary from 0.1 to 2.0 as shown in Fig. 
5, while the other parameters are fixed as wline = 0.1, = wedge0.1 
for 20 iterations.

External Parameters
To determine wline and wedge, we examine the shape variation 

of contours w.r.t. those parameters, while α and β are fixed. In 
general, to find appropriate values of wline and wedge, α needs to 
be set at 0.1 because it gives the best performance, as shown in 
Fig. 5. However, when α=0.1, the vessel boundary is almost 
perfectly segmented, even if wline and wedge are arbitrarily select-
ed in the range of 0 to 2.0. In such a case, it is difficult to find 
suitable values for wline and wedge because the vessel is segmented 
precisely, regardless of the values of and . However, when , the 
vessel is not segmented correctly, depending on the values of 
wline and wedge. Therefore, it is necessary to find wline and wedge 
when α is not optimally found. Here, we set α=0.5 for obtaining 
the segmentation while changing the values of wline and wedge.

Artery Tracking with Unscented Kalman Snake
Fig. 7 shows the results of vessel tracking on the chest CTA 

images by using the proposed algorithm. In Fig. 7A, the first 
measurement estimate is obtained in terms of brightness, edge 
information, shape, and size elasticity of the contour itself. The 

Fig. 5. Results of snake iteration for Wline=0.1 and Wedge=0.1 while 
varying α and β. For a given fixed α, there is a small variation in 
the contour w.r.t β, and for a given fixed β, the α more increases, 
the more the contour shrinks compared to its initial shape. 

0                   0.1                 0.5                  1.0                  1.5                  2.0        β

α

2.0

1.5

1.0

0.5

0.1
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generated information effects the a posteriori information on 
the next CTA frame. For the following frames, the vessel is tracked 
through the more detailed tracking process utilizing Snake 
and UKF. As a result, the blood vessel can be tracked along with 
the artery, and the results for every 50 frames are shown in Fig. 
7. For each slice, the segmented blood vessel is highlighted by 
the dotted line. As the slice propagates, it is shown that the po-
sition and shape of the blood vessel are deformed, and the pro-
posed algorithm tracks the blood vessel accordingly.

3D Visualization of a Tracked Vessel
Fig. 8 represents the 3D visualization of the tracked artery 

based on the results from the previous section. For high speed 
3D visualization, the graphics hardware (GeForce GTX 560Ti 
of NVIDIA) is exploited. According to Fig. 8, the segmented 
blood vessel is highlighted in red, and the other organs and bones 
are represented as a semitransparent color. The coronal, trans-
verse and sagittal slices of the chest are represented in (A), (B), 
and (C), respectively, and the blood vessels for segmentation are 
classified properly.

Discussion

As stated in Section II, between snake iterations, the elastici-
ty of the contour is increased as α is increased. It can be identi-
fied in Fig. 5, for a given fixed value of β, the more α increases, 
the more the contour shrinks compared to its initial shape. On 
the contrary, the shape variation w.r.t. β is slight because the 
initial snake iteration is operated on the bilinear interpolated 
control points of user input; meaning, as the interpolated shape 
using the initial points becomes round, it is still maintained 
through the iteration without changing its shape much. Thus, 
it can be stated that the contour is almost independent of β. 
Therefore, the contour will tightly adhere to the vessel bound-
ary relying on the value of α.

Fig. 6 shows the results of snake iteration for α=0.5 and  β=0.5 
while varying wline and wedge. When is fixed, as the value of wline 
is increased, the contour deforms its shape into the vessel bound-
ary, especially when wedge is low (i.e., in the range of 0.1 to 0.5), 
and the contour is extended outside of the boundary, meaning 
it is over-segmented. As mentioned in Section II, wline is the pa-
rameter related to the pixel intensity, and the result shows that 
the greater is the weight wline for the snake energy equation, the 
better the contour segments the boundary. Moreover, if wline is 
fixed, the contour deforms and fits well on the boundary as 
wedge is increased.

Conclusion

In this paper, we investigated a 3D vessel tracking algorithm 
called the unscented Kalman snake by jointly employing snake 
and the Kalman filter, both of which have been widely used for 

Fig. 6. Result of Snake iteration for α=0.1 and β=0. while varying 
Wline and Wedge. For a given Wedge, as the value Wline of increased, 
the contour over-segments the vessel boundary. In addition, for a 
given Wline, as the value of wedge is increased, the contour is 
close to the boundary of the vessel. 

0                   0.1                0.5                 1.0                 1.5                2.0     Wedge

Wedge

2.0

1.5

1.0

0.5

0.1

Fig. 7. Artery tracking example for every 50 frames. The red line 
shows the segmented vessel contour.

Fig. 8. 3D visualization of a segmented vessel. The tube-shaped 
middle line shows arteries.

A B C
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automatic control algorithms in the area of computer vision. 
The arbitrarily shaped blood vessel boundary on each slice is 
segmented by using the active contour model, and a Kalman 
filter is employed to track the translation and shape deforma-
tion between CTA slices. The proposed algorithm is applied to 
the 3D visualization of chest CTA images using graphics hard-
ware. Through this algorithm, more opportunities, giving quick 
and brief diagnosis, could be provided for the radiologist before 
detailed diagnosis using 2D CTA slices. Also, for the surgeon, the 
algorithm could be used for surgical planning, simulation, 
navigation and rehearsal, and is expected to be applied to highly 
valuable applications for more accurate 3D vessel tracking and 
rendering.
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