Abstract
For quantitative analysis of the cardiac diseases. it is necessary to segment the left-ventricle (LY) in MR (Magnetic Resonance) cardiac images. Snake or active contour model has been used to segment LV boundary. However, the contour of the LV front these models may not converge to the desirable one because the contour may fall into local minimum value due to image artifact inside of the LY Therefore, in this paper, we Propose the Preprocessing method using k-means clustering and merging algorithms that can improve the performance of the active contour model. We verified that our proposed algorithm overcomes local minimum convergence problem by experiment results.
심장 질환의 정량적 분석을 위해서 자기공명 심장 영상에서 좌심실의 경계를 추출하는 것이 중요하다. Snake 또는 active contour 모델은 좌심실 경계 추출을 위해서 사용되어 왔다. 그러나 이 모델을 사용하는데 있어서 좌심실의 경계선이 좌심실 내부에 생긴 결절 때문에 경계선이 지역최소값으로 빠져서 원하는 경계선에 수렴하지 못 할 수도 있다. 그러므로 본 논문에서는 active contour 모델의 성능을 향상시킬 수 있는 k 평균 군집화와 병합 알고리즘을 이용한 전처리 방법을 제안하였다. 제안된 방법으로 지역 최소값 수렴 문제를 해결함을 확인하였다.