• Title/Summary/Keyword: Active circuit

Search Result 1,004, Processing Time 0.031 seconds

4-Channel 2.5-Gb/s/ch CMOS Optical Receiver Array for Active Optical HDMI Cables (액티브 광케이블용 4-채널 2.5-Gb/s/ch CMOS 광 수신기 어레이)

  • Lee, Jin-Ju;Shin, Ji-Hye;Park, Sung-Min
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.8
    • /
    • pp.22-26
    • /
    • 2012
  • This paper introduces a 2.5-Gb/s optical receiver implemented in a standard 1P4M 0.18um CMOS technology for the applications of active optical HDMI cables. The optical receiver consists of a differential transimpedance amplifier(TIA), a five-stage differential limiting amplifier(LA), and an output buffer. The TIA exploits the inverter input configuration with a resistive feedback for low noise and power consumption. It is cascaded by an additional differential amplifier and a DC-balanced buffer to facilitate the following LA design. The LA consists of five gain cells, an output buffer, and an offset cancellation circuit. The proposed optical receiver demonstrates $91dB{\Omega}$ transimpedance gain, 1.55 GHz bandwidth even with the large photodiode capacitance of 320 fF, 16 pA/sqrt(Hz) average noise current spectral density within the bandwidth (corresponding to the optical sensitivity of -21.6 dBm for $10^{-12}$ BER), and 40 mW power dissipation from a single 1.8-V supply. Test chips occupy the area of $1.35{\times}2.46mm^2$ including pads. The optically measured eye-diagrams confirms wide and clear eye-openings for 2.5-Gb/s operations.

Charge-discharge Characteristics of $LiCoO_2/Li$ Rechargeable Cell ($LiCoO_2/Li$ 2차전지의 충방전 특성)

  • Moon, S.I.;Doh, C.H.;Jeong, E.D.;Kim, B.S.;Park, D.W.;Yun, M.S.;Yeom, D.H.;Jeong, M.Y.;Park, C.J.;Yun, S.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1993.05a
    • /
    • pp.79-84
    • /
    • 1993
  • This paper describes the development of lithium rechargeable cell. $LiCoO_2$ is recently recognized as a suitable cathode active material of a high voltage, high energy lithium rechargeable batteries because $Li^+$ ion can be electrochemically deintercalated/intercalated from/to $Li_xCoO_2$. The transition metal oxide of $LiCoO_2$ was investigated for using as a cathode active material of 4V class Li rechargeable cell. $LiCoO_2$ cathode was prepared by using a active material of 85 wt%, graphite powder of 12 wt% as a conductor and poly-vinylidene fluoride of 3 wt% as a binder. The electrochemical and charge/discharge properties of $LiCoO_2$ were investigated by cyclic voltammetry and galvanostatic charge/discharge. The open circuit voltage of prepared $LiCoO_2$ electrode exhibited approximately. potential range between 3.32V and 3.42V. During the galvanostatic charge/discharge, $LiCoO_2/Li$ cell showed stable cycling behavior at scan rate of 1mV/sec and potential range between 3.6V and 4.2V. Also its coulombic efficiency as function of cycling was 81%~102%. In this study the $LiCoO_2/Li$ cell showed the available discharge capacity of 90.1 mAh/g at current density of $1mA/cm^2$ and cell discharge voltage range between 3.6V~4.2V.

  • PDF

Development of Wide-Band Planar Active Array Antenna System for Electronic Warfare (전자전용 광대역 평면형 능동위상배열 안테나 시스템 개발)

  • Kim, Jae-Duk;Cho, Sang-Wang;Choi, Sam Yeul;Kim, Doo Hwan;Park, Heui Jun;Kim, Dong Hee;Lee, Wang Yong;Kim, In Seon;Lee, Chang Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.6
    • /
    • pp.467-478
    • /
    • 2019
  • This paper describes the development and measurement results of a wide-band planar active phase array antenna system for an electronic warfare jamming transmitter. The system is designed as an $8{\times}8$ triangular lattice array using a $45^{\circ}$ slant wide-band antenna. The 64-element transmission channel is composed of a wide-band gallium nitride(GaN) solid state power amplifier and a gallium arsenide(GaAs) multi-function core chip(MFC). Each GaAs MFC includes a true-time delay circuit to avoid a wide-band beam squint, a digital attenuator, and a GaAs drive amplifier to electronically steer the transmitted beam over a ${\pm}45^{\circ}$ azimuth angle and ${\pm}25^{\circ}$ elevation angle scan. Measurement of the transmitted beam pattern is conducted using a near-field measurement facility. The EIRP of the designed system, which is 9.8 dB more than the target EIRP performance(P), and the ${\pm}45^{\circ}$ azimuth and ${\pm}25^{\circ}$ elevation beam steering fulfill the desired specifications.

A Miniaturized 2.5 GHz 8 W GaN HEMT Power Amplifier Module Using Selectively Anodized Aluminum Oxide Substrate (선택적 산화 알루미늄 기판을 이용한 소형 2.5 GHz 8 W GaN HEMT 전력 증폭기 모듈)

  • Jeong, Hae-Chang;Oh, Hyun-Seok;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.12
    • /
    • pp.1069-1077
    • /
    • 2011
  • In this paper, a design and fabrication of a miniaturized 2.5 GHz 8 W power amplifier using selectively anodized aluminum oxide(SAAO) substrate are presented. The process of SAAO substrate is recently proposed and patented by Wavenics Inc. which uses aluminum as wafer. The selected active device is a commercially available GaN HEMT chip of TriQuint company, which is recently released. The optimum impedances for power amplifier design were extracted using the custom tuning jig composed of tunable passive components. The class-F power amplifier are designed based on EM co-simulation of impedance matching circuit. The matching circuit is realized in SAAO substrate. For integration and matching in the small package module, spiral inductors and single layer capacitors are used. The fabricated power amplifier with $4.4{\times}4.4\;mm^2$ shows the efficiency above 40 % and harmonic suppression above 30 dBc for the second(2nd) and the third(3rd) harmonic at the output power of 8 W.

Perception of CCTV operation through administrative action in schools : Focus on public schools in Sejong (학교내 영상정보처리기기 업무 처리 실태 및 개선을 위한 소고 : 세종시 공립학교 공문서 처리행태를 중심으로)

  • Kwon, Hyurk-Choon
    • Korean Educational Research Journal
    • /
    • v.41 no.2
    • /
    • pp.25-53
    • /
    • 2020
  • Purpose: School safety has recently become an important issue. In order to make a school environment safer, surveillance cameras have been installed in the facilities. The number of installations has been increasing rapidly since they have been considered widely recognizable and highly effective. However, conflicts between faculty and staff in installing and operating the system have also been increasing. In terms of school safety, these individuals'' cooperation is more than necessary. It is judged that looking into how they perceive the system could provide us with some suggestions on how to manage the related issues. The purpose of this study is to understand the perspective of faculty over closed-circuit television (CCTV) and make suggestions by analyzing their actions. Approach: In order to achieve the research objectives, I surveyed administrative actions such as the processing of official documents and CCTV policies for teachers and administrative staff of public schools in the Sejong Office of Education. In addition, I analyzed the behavior of those managing personal information and school safety-related documents along with the degree of complying with the policies. Finding: First, the correspondence rate of documents was high when there were designated document processors. Second, the acceptance level of documents in preschool was relatively low when there were designated processors. Third, the degree of accepting the policies and complying with them was higher in newly established schools than in existing schools. I found differences in the perception of how to handle the CCTV operations and the related work among the two groups of participants. In addition, I made suggestions on how to resolve the conflicts between them. Value: In this study, the education authorities quantified and measured the recognition and acceptance of faculty and staff regarding CCTV at each school level. Results showed that the active role of education authorities can make positive changes in how faculty and staff perceive the CCTV system and the problems surrounding it through school administrative action. In this regard, these results are meaningful in reducing the conflicts among the two groups and improving the organizational culture.

  • PDF

Effect of Cleaning Processes of Silicon Wafer on Surface Passivation and a-Si:H/c-Si Hetero-Junction Solar Cell Performances (기판 세정특성에 따른 표면 패시배이션 및 a-Si:H/c-Si 이종접합 태양전지 특성변화 분석)

  • Song, Jun-Yong;Jeong, Dae-Young;Kim, Chan-Seok;Park, Sang-Hyun;Cho, Jun-Sik;Song, Jin-Soo;Wang, Jin-Suk;Lee, Jeong-Chul
    • Korean Journal of Materials Research
    • /
    • v.20 no.4
    • /
    • pp.210-216
    • /
    • 2010
  • This paper investigates the dependence of a-Si:H/c-Si passivation and heterojunction solar cell performances on various cleaning processes of silicon wafers. It is observed that the passivation quality of a-Si:H thin-films on c-Si wafers depends highly on the initial H-termination properties of the wafer surface. The effective minority carrier lifetime (MCLT) of highly H-terminated wafer is beneficial for obtaining high quality passivation of a-Si:H/c-Si. The wafers passivated by p(n)-doped a-Si:H layers have low MCLT regardless of the initial H-termination quality. On the other hand, the MCLT of wafers incorporating intrinsic (i) a-Si:H as a passivation layer shows sensitive variation with initial cleaning and H-termination schemes. By applying the improved cleaning processes, we can obtain an MCLT of $100{\mu}sec$ after H-termination and above $600{\mu}sec$ after i a-Si:H thin film deposition. By adapting improved cleaning processes and by improving passivation and doped layers, we can fabricate a-Si:H/c-Si heterojunction solar cells with an active area conversion efficiency of 18.42%, which cells have an open circuit voltage of 0.670V, short circuit current of $37.31\;mA/cm^2$ and fill factor of 0.7374. These cells show more than 20% pseudo efficiency measured by Suns-$V_{oc}$ with an elimination of series resistance.

The Post Annealing Effect of Organic Thin Film Solar Cells with P3HT:PCBM Active Layer (P3HT:PCBM 활성층을 갖는 유기 박막태양전지의 후속 열처리 효과)

  • Jang, Seong-Kyu;Gong, Su-Cheol;Chang, Ho-Jung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.2
    • /
    • pp.63-67
    • /
    • 2010
  • The organic solar cells with Glass/ITO/PEDOT:PSS/P3HT:PCBM/Al structure were fabricated using regioregular poly (3-hexylthiophene) (P3HT) polymer:(6,6)- phenyl $C_{61}$-butyric acid methyl ester (PCBM) fullerene polymer as the bulk hetero-junction layer. The P3HT and PCBM as the electron donor and acceptor materials were spin casted on the indium tin oxide (ITO) coated glass substrates. The optimum mixing concentration ratio of photovoltaic layer was found to be P3HT:PCBM = 4:4 in wt%, indicating that the short circuit current density ($J_{SC}$), open circuit voltage ($V_{OC}$), fill factor (FF) and power conversion efficiency (PCE) values were about 4.7 $mA/cm^2$, 0.48 V, 43.1% and 0.97%, respectively. To investigate the effects of the post annealing treatment, as prepared organic solar cells were post annealed at the treatment time range from 5min to 20min at $150^{\circ}C$. $J_{SC}$ and $V_{OC}$ increased with increasing the post annealing time from 5min to 15min, which may be originated from the improvement of the light absorption coefficient of P3HT and improved ohmic contact between photo voltaic layer and Al electrode. The maximum $J_{SC},\;V_{OC}$, FF and PCE values of organic solar cell, which was post annealed for 15min at $150^{\circ}C$, were found to be about 7.8 $mA/cm^2$, 0.55 V, 47% and 2.0%, respectively.

Development of Acid Resistance Velocity Sensor for Analyzing Acidic Fluid Flow Characteristics (산성 용액 내 유속 측정을 위한 내산성 센서 개발)

  • Choi, Gyujin;Yoon, Jinwon;Yu, Sangseok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.10
    • /
    • pp.629-636
    • /
    • 2016
  • This study presents the development of an acid resistance velocity sensor that is used for measuring velocity inside a copper sulfate plating bath. First, researchers investigated the acid resistance coating to confirm the suitability of the anti-acid sensor in a very corrosive environment. Then, researchers applied signal processing methods to reduce noise and amplify the signal. Next, researchers applied a pressure-resistive sensor with an operation amplifier (Op Amp) and low-pass filter with high impedance to match the output voltage of a commercial flowmeter. Lastly, this study compared three low-pass filters (Bessel, Butterworth and Chebyshev) to select the appropriate signal process circuit. The results show 0.0128, 0.0023, and 5.06% of the mean square error, respectively. The Butterworth filter yielded more precise results when compared to a commercial flowmeter. The acid resistive sensor is capable of measuring velocities ranging from 2 to 6 m/s with a 2.7% margin of error.

High Efficiency Solar Cell(I)-Fabrication and Characteristics of $N^+PP^+$ Cells (고효율 태양전지(I)-$N^+PP^+$ 전지의 제조 및 특성)

  • 강진영;안병태
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.18 no.3
    • /
    • pp.42-51
    • /
    • 1981
  • Boron was predeposited into p (100) Si wafer at 94$0^{\circ}C$ for 60minutes to make the back surface field. High tempreature diffusion process at 1145$^{\circ}C$ for 3 hours was immediately followed without removing boron glass to obtain high surface concentration Back boron was annealed at 110$0^{\circ}C$ for 40minutes after boron glass was removed. N+ layer was formed by predepositing with POCI3 source at 90$0^{\circ}C$ for 7~15 minutes and annealed at 80$0^{\circ}C$ for 60min1es under dry Of ambient. The triple metal layers were made by evaporating Ti, Pd, Ag in that order onto front and back of diffused wafer to form the front grid and back electrode respectively. Silver was electroplated on front and back to increase the metal thickness form 1~2$\mu$m to 3~4$\mu$m and the metal electrodes are alloyed in N2 /H2 ambient at 55$0^{\circ}C$ and followed by silicon nitride antireflection film deposition process. Under artificial illumination of 100mW/$\textrm{cm}^2$ fabricated N+PP+ cells showed typically the open circuit voltage of 0.59V and short circuit current of 103 mA with fill factor of 0.80 from the whole cell area of 3.36$\textrm{cm}^2$. These numbers can be used to get the actual total area(active area) conversion efficiency of 14.4%(16.2%) which has been improved from the provious N+P cell with 11% total area efficiency by adding P+ back.

  • PDF

Analysis of Subwavelength Metal Hole Array Structure for the Enhancement of Quantum Dot Infrared Photodetectors

  • Ha, Jae-Du;Hwang, Jeong-U;Gang, Sang-U;No, Sam-Gyu;Lee, Sang-Jun;Kim, Jong-Su;Krishna, Sanjay;Urbas, Augustine;Ku, Zahyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.334-334
    • /
    • 2013
  • In the past decade, the infrared detectors based on intersubband transition in quantum dots (QDs) have attracted much attention due to lower dark currents and increased lifetimes, which are in turn due a three-dimensional confinement and a reduction of scattering, respectively. In parallel, focal plane array development for infrared imaging has proceeded from the first to third generations (linear arrays, 2D arrays for staring systems, and large format with enhanced capabilities, respectively). For a step further towards the next generation of FPAs, it is envisioned that a two-dimensional metal hole array (2D-MHA) structures will improve the FPA structure by enhancing the coupling to photodetectors via local field engineering, and will enable wavelength filtering. In regard to the improved performance at certain wavelengths, it is worth pointing out the structural difference between previous 2D-MHA integrated front-illuminated single pixel devices and back-illuminated devices. Apart from the pixel linear dimension, it is a distinct difference that there is a metal cladding (composed of a number of metals for ohmic contact and the read-out integrated circuit hybridization) in the FPA between the heavily doped gallium arsenide used as the contact layer and the ROIC; on the contrary, the front-illuminated single pixel device consists of two heavily doped contact layers separated by the QD-absorber on a semi-infinite GaAs substrate. This paper is focused on analyzing the impact of a two dimensional metal hole array structure integrated to the back-illuminated quantum dots-in-a-well (DWELL) infrared photodetectors. The metal hole array consisting of subwavelength-circular holes penetrating gold layer (2DAu-CHA) provides the enhanced responsivity of DWELL infrared photodetector at certain wavelengths. The performance of 2D-Au-CHA is investigated by calculating the absorption of active layer in the DWELL structure using a finite integration technique. Simulation results show the enhanced electric fields (thereby increasing the absorption in the active layer) resulting from a surface plasmon, a guided mode, and Fabry-Perot resonances. Simulation method accomplished in this paper provides a generalized approach to optimize the design of any type of couplers integrated to infrared photodetectors.

  • PDF