• Title/Summary/Keyword: Active catalyst

Search Result 476, Processing Time 0.034 seconds

Characterization of Passive Direct Methanol Fuel Cells (수동형 직접 메탄올 연료전지의 특성 연구)

  • Kho, B.K.;Kim, Y.J.;Oh, I.H.;Hong, S.A.;Ha, H.Y.
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.1
    • /
    • pp.23-27
    • /
    • 2003
  • In this study investigations have been carried out for the evaluation of small DMFCS under passive operation conditions for use in portable powers. Under passive conditions, a maximum performance was obtained at a methanol concentration of 4 M and at a catalyst loading of $8mg/cm^2$ on both electrodes. By optimizing various parameters, we could achieve the highest performance of $55mW/cm^2$ at 1 attn and at R.T.A monopolar stack consisting of 6 unit cells with active area of $4.5cm^2/cell$ was prepared and it showed a uniform voltage distribution all over the cells and it had a power output of 1 watt and a power density of $37mW/cm^2$ A monopolar stack which consisted of 16 cells and produced a 2.4W power was also fabricated and was tested for operation of a miniature car.

Catalytic Activity of Au/$TiO_2$ and Pt/$TiO_2$ Nanocatalysts Synthesized by Arc Plasma Deposition

  • Jung, Chan-Ho;Kim, Sang-Hoon;Reddy, A.S.;Ha, H.;Park, Jeong-Y.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.245-245
    • /
    • 2012
  • Syntheses of oxide supported metal catalysts by wet-chemical routes have been well known for their use in heterogeneous catalysis. However, uniform deposition of metal nanoparticles with controlled size and shape on the support with high reproducibility is still a challenge for catalyst preparation. Among various synthesis methods, arc plasma deposition (APD) of metal nanoparticles or thin films on oxide supports has received great interest recently, due to its high reproducibility and large-scale production, and used for their application in catalysis. In this work, Au and Pt nanoparticles with size of 1-2 nm have been deposited on titania powder by APD. The size of metal nanoparticles was controlled by number of shots of metal deposition and APD conditions. These catalytic materials were characterized by x-ray diffraction (XRD), inductively coupled plasma (ICP-AES), CO-chemisorption and transmission electron microscopy (TEM). Catalytic activity of the materials was measured by CO oxidation using oxygen, as a model reaction, in a micro-flow reactor at atmospheric pressure. We found that Au/$TiO_2$ is reactive, showing 100% conversion at $110^{\circ}C$, while Pt/$TiO_2$ shows 100% conversion at $200^{\circ}C$. High activity of metal nanoparticles suggests that APD can be used for large scale synthesis of active nanocatalysts. We will discuss the effect of the structure and metal-oxide interactions of the catalysts on catalytic activity.

  • PDF

Preparation of WO3-TiO2 Photocatalyst and Evaluation of Its Photo-activity in the Visible Light Range (가시광 활성 WO3-TiO2 복합체 광촉매의 제조 및 이의 특성 평가)

  • Yeo, In-Chul;Kang, In-Cheol
    • Journal of Powder Materials
    • /
    • v.20 no.6
    • /
    • pp.474-478
    • /
    • 2013
  • The most general photocatalyst, $TiO_2$ and $WO_3$, are acknowledged to be ineffective in range of visible light. Therefore, many efforts have been directed at improving their activity such as: band-gap narrowing with non-metal element doping and making composites with high specific surface area to effectively separate electrons and holes. In this paper, the method was introduced to prepare a photo-active catalyst to visible irradiation by making a mixture with $TiO_2$ and $WO_3$. In the $TiO_2-WO_3$ composite, $WO_3$ absorbs visible light creating excited electrons and holes while some of the excited electrons move to $TiO_2$ and the holes remain in $WO_3$. This charge separation reduces electron-hole recombination resulting in an enhancement of photocatalytic activity. Added Ag plays the role of electron acceptor, retarding the recombination rate of excited electrons and holes. In making a mixture of $TiO_2-WO_3$ composite, the mixing route affects the photocatalytic activity. The planetary ball-mill method is more effective than magnetic stirring route, owing to a more effective dispersion of aggregated powders. The volume ratio of $TiO_2(4)$ and $WO_3(6)$ shows the most effective photocatalytic activity in the range of visible light in the view point of effective separation of electrons and holes.

A Effect of H2O-H2 Pretreatment on VOCs Oxidation over Noble Catalysts on Titania (티타니아에 담지된 귀금속촉매의 H2O-H2 전처리에 따른 휘발성유기화합물 산화에 미치는 영향)

  • Kim, Moon-Chan;Ko, Sun-Hwan
    • Applied Chemistry for Engineering
    • /
    • v.18 no.6
    • /
    • pp.552-556
    • /
    • 2007
  • In this study, noble metals (Pd, Ru, Ir) were supported to $TiO_2$ catalyst. In order to distribute metals uniformly, $H_2O-H_2$ pretreatment technique was used. Xylene, toluene, and MEK were used as reactants. The monometallic or bimetallic catalysts were prepared by the excess wetness impregnation method and were characterized by XRD, and XPS analysis. Pd-Ru, Pd-Ir bimetallic catalysts had multipoint active sites which improved the range of Pd metal state. Bimetallic catalysts had a higher conversion of VOCs than that of monometallic one. The effect of $H_2O-H_2$ pretreatment technique was the enhancement of uniform distribution of Pd particles and promotion of catalytic efficiency. In this study, addition of Ru and Ir metals to Pd promoted oxidation conversion of VOCs. In addition, $H_2O-H_2$ pretreatment promoted removal efficiency of VOCs on the $TiO_2$ support.

Synthesis of Aniline from Nitrobenzene and Fe(CO)5 with PEG/γ-Al2O3 as Phase Transfer Catalyst (PEG/γ-Al2O3 상이동 촉매상에서 니트로벤젠과 Fe(CO)5로부터의 아닐린 합성)

  • Oh, So-Young;Lee, Hwa-Su;Park, Dae-Won;Park, Sang-Wook;Shin, Jung-Ho
    • Applied Chemistry for Engineering
    • /
    • v.4 no.1
    • /
    • pp.144-152
    • /
    • 1993
  • Immobilized polyethylene glycols onto metal oxides such as ${\gamma}-Al_2O_3$, ${\alpha}-Al_2O_3$, $SiO_2$ and $TiO_2$ were used as phase transfer catalysts for the room temperature synthesis of aniline from nitrobenzene and ironpentacarbonyl. The amount of attached PEG molecules increased with specific surface area of metal oxides. Among the immobilized catalysts tested PEG/${\gamma}-Al_2O_3$ showed the highest activity. The reaction rate increased with the chain length of PEG mole-cules and the aqueous NaOH concentration. Mechanistic study carried out using infrared spectrometer revealed that the role of PEG was to increase the formation of $HFe(CO)_4{^-}$ ion, which is known as active species, and its movement from aqueous to organic phase.

  • PDF

Study on Catalytic Activity of the Selective CO Oxidation and Characterization Using $La_{0.5}Ce_{0.5}Co_{1-x}Cu_xO_{3-{\alpha}}$ Perovskite Catalysts ($La_{0.5}Ce_{0.5}Co_{1-x}Cu_xO_{3-{\alpha}}$ Perovskite촉매의 선택적 CO 산화반응 및 특성 분석에 관한 연구)

  • Sohn, Jung-Min
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.2
    • /
    • pp.116-123
    • /
    • 2007
  • [ $La_{0.5}Ce_{0.5}Co_{1-x}Cu_xO_{3-{\alpha}}$ ](X=0, 0.1, 0.3, 0.5) perovskites were prepared by coprecipitation method at pH 7 or pH 11 and its catalytic activity of selective CO oxidation was investigated. The characteristics of these catalysts were analyzed by $N_2$ adsorption, X-ray diffraction(XRD), SEM, $O_2$-temperature programmed desorption(TPD). The pH value at a preparation step made effect on particle morphology. The smaller particle was obtained with a condition of pH 7. The better catalytic activity was observed using catalysts prepared at pH 7 than pH 11. The maximum CO conversion of 98% was observed over $La_{0.5}Ce_{0.5}Co_{0.7}Cu_{0.3}O_{3-{\alpha}}$ at $320^{\circ}C$. Below $200^{\circ}C$, the most active catalyst was $La_{0.5}Ce_{0.5}Co_{0.9}Cu_{0.1}O_{3-{\alpha}}$, of which conversion was 92% at $200^{\circ}C$. By the substitution of Cu, the evolution of ${\alpha}$-oxygen was remarkably enhanced regardless of pH value at preparation step according to $O_2$-TPD. Among the different ${\alpha}$-oxygen species, the oxygen species evolved between $400^{\circ}C$ and $500^{\circ}C$, gave the better catalytic performance for selective CO oxidation including $La_{0.5}Ce_{0.5}CoO_3$ in which Cu was absent.

The Electrochemical Performance Evaluation of PBI-based MEA with Phosphoric Acid Doped Cathode for High Temperature Fuel Cell (인산 도핑 PBI계 막전극접합체를 적용한 고온형 수소연료전지의 전기화학적 내구성 연구)

  • RHEE, JUNKI;LEE, CHANMIN;JEON, YUKWON;LEE, HONG YEON;PARK, SANG SUN;KIM, TAE YOUNG;KIM, HEESEON;SONG, SOONHO;PARK, JUNG OCK;SHUL, YONG-GUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.5
    • /
    • pp.471-480
    • /
    • 2017
  • A proton exchange membrane fuel cell (PEMFC) operated at $150^{\circ}C$ was evaluated by a controlling different amount of phosphoric acid (PA) to a membrane-electrode assembly (MEA) without humidification of the cells. The effects on MEA performance of the amount of PA in the cathode are investigated. The PA content in the cathodes was optimized for higher catalyst utilization. The highest value of the active electrochemical area is achieved with the optimum amount of PA in the cathode confirmed by in-situ cyclic voltammetry. The current density-voltage experiments (I-V curve) also shows a transient response of cell voltage affected by the amount of PA in the electrodes. Furthermore, this information was compared with the production variables such as hot pressing and vacuum drying to investigate those effect to the electrochemical performances.

Synergistic Effect of Copper and Cobalt in Cu-Co-O Composite Nanocatalyst for Catalytic Ozonation

  • Dong, Yuming;Wu, Lina;Wang, Guangli;Zhao, Hui;Jiang, Pingping;Feng, Cuiyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3227-3232
    • /
    • 2013
  • A novel Cu-Co-O composite nanocatalyst was designed and prepared for the ozonation of phenol. A synergistic effect of copper and cobalt was observed over the Cu-Co-O composite nanocatalyst, which showed higher activity than either copper or cobalt oxide alone. In addition, the Cu-Co-O composite revealed good activity in a wide initial pH range (4.11-8.05) of water. The fine dispersion of cobalt on the surface of copper oxide boosted the interaction between catalyst and ozone, and the surface Lewis acid sites on the Cu-Co-O composite were determined as the active sites. The Raman spectroscopy also proved that the Cu-Co-O composite was quite sensitive to the ozone. The trivalent cobalt in the Cu-Co-O composite was proposed as the valid state.

Promoting Effect of AlCl_3 on the Fe-catalyzed Dimerization of Bicyclo[2.2.1]hepta-2,5-diene

  • Nguyen, Mai Dao;Nguyen, Ly Vinh;Lee, Je-Seung;Han, Jeong-Sik;Jeong, Byung-Hun;Cheong, Min-Serk;Kim, Hoon-Sik;Kang, Ho-Jung
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.7
    • /
    • pp.1364-1368
    • /
    • 2008
  • The activity of the catalytic system composed of Fe$(acetylacetonate)_3$ (Fe$(acac)_3$), triphenylphosphine, and diethylaluminum chloride for the dimerization of bicyclo[2.2.1]hepta-2,5-diene (2,5-norbornadiene, NBD) to produce hexacyclic endo-endo dimer (hexacyclo[$7.2.1.0^{2,8}.1^{3,7}.1^{5,13}.0^{4,6}$]tetradec-10-ene, Hnn) was significantly enhanced by the presence of $AlCl_3$, especially at the molar ratios of NBD/Fe$(acac)_3$ of 500. XPS analysis of the catalytic systems clearly demonstrates that $AlCl_3$ facilitates the reduction of Fe$(acac)_3$ to form active species, Fe(II) and Fe(0) species. The layer separation was observed when [BMIm]Cl was used along with $AlCl_3$, but catalyst recycle was not very successful.

Direct Synthesis of H2O2 over Ti-Containing Molecular Sieves Supported Gold Catalysts: A Comparative Study for In-situ-H2O2-ODS of Fuel

  • Zhang, Han;Liu, Guangliang;Song, Haiyan;Chen, Chunxia;Han, Fuqin;Chen, Ping;Zhao, Zhixi;Hu, Shaozheng
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.3065-3072
    • /
    • 2013
  • Direct synthesis of $H_2O_2$ and in situ oxidative desulfurization of model fuel over Au/Ti-HMS and Au/TS-1 catalysts has been comparatively investigated in water or methanol. Maximum amount (82%) of active $Au^0$ species for $H_2O_2$ synthesis was obtained. Au/Ti-HMS and Au/TS-1 exhibited the contrary performances in $H_2O_2$ synthesis as $CH_3OH/H_2O$ ratio of solvent changed. $H_2O_2$ decomposition and hydrogenation in water was inhibited by the introduction of methanol. Effect of $O_2/H_2$ ratio on $H_2O_2$ concentration, $H_2$ conversion and $H_2O_2$ selectivity revealed a relationship between $H_2O_2$ generation and $H_2$ consumption. The highest dibenzothiophene removal rate (83.2%) was obtained over Au/Ti-HMS in methanol at 1.5 of $O_2/H_2$ ratio and $60^{\circ}C$. But removal of thiophene over Au/TS-1 should be performed in water without heating to obtain a high removal rate (61.3%). Meanwhile, $H_2$ conversion and oxidative desulfurization selectivity of $H_2$ were presented.