DOI QR코드

DOI QR Code

Direct Synthesis of H2O2 over Ti-Containing Molecular Sieves Supported Gold Catalysts: A Comparative Study for In-situ-H2O2-ODS of Fuel

  • Zhang, Han (Department of Chemistry, College of Science, Northeast Forestry University) ;
  • Liu, Guangliang (Departments of Chemical & Biomolecular Engineering, Center for Clean Energy Engineering, University of Connecticut) ;
  • Song, Haiyan (Department of Chemistry, College of Science, Northeast Forestry University) ;
  • Chen, Chunxia (Department of Chemistry, College of Science, Northeast Forestry University) ;
  • Han, Fuqin (Department of Chemistry, College of Science, Northeast Forestry University) ;
  • Chen, Ping (Key Laboratory of Pollution Monitoring and Control, Xinjiang Normal University) ;
  • Zhao, Zhixi (Key Laboratory of Pollution Monitoring and Control, Xinjiang Normal University) ;
  • Hu, Shaozheng (Institute of Eco-environmental Sciences, Liaoning Shihua University)
  • Received : 2013.06.13
  • Accepted : 2013.07.25
  • Published : 2013.10.20

Abstract

Direct synthesis of $H_2O_2$ and in situ oxidative desulfurization of model fuel over Au/Ti-HMS and Au/TS-1 catalysts has been comparatively investigated in water or methanol. Maximum amount (82%) of active $Au^0$ species for $H_2O_2$ synthesis was obtained. Au/Ti-HMS and Au/TS-1 exhibited the contrary performances in $H_2O_2$ synthesis as $CH_3OH/H_2O$ ratio of solvent changed. $H_2O_2$ decomposition and hydrogenation in water was inhibited by the introduction of methanol. Effect of $O_2/H_2$ ratio on $H_2O_2$ concentration, $H_2$ conversion and $H_2O_2$ selectivity revealed a relationship between $H_2O_2$ generation and $H_2$ consumption. The highest dibenzothiophene removal rate (83.2%) was obtained over Au/Ti-HMS in methanol at 1.5 of $O_2/H_2$ ratio and $60^{\circ}C$. But removal of thiophene over Au/TS-1 should be performed in water without heating to obtain a high removal rate (61.3%). Meanwhile, $H_2$ conversion and oxidative desulfurization selectivity of $H_2$ were presented.

Keywords

References

  1. Landon, P.; Collier, P. J.; Papworth, A. J.; Kiely, C. J.; Hutchings, G. J. Chem. Commun. 2002, 2058.
  2. Lunsford, J. H. J. Catal. 2003, 216, 455. https://doi.org/10.1016/S0021-9517(02)00070-2
  3. Hayashi, T.; Tanaka, K.; Haruta, M. J. Catal. 1998, 178, 566. https://doi.org/10.1006/jcat.1998.2157
  4. Sinha, A. K.; Seelan, S.; Okumura, M.; Akita, T.; Tsubota, S.; Haruta, M. J. Phys. Chem. B 2005, 109, 3956. https://doi.org/10.1021/jp0465229
  5. Li, G.; Edwards, J.; Carley, A. F.; Hutchings, G. J. Catal. Commun. 2007, 8, 247. https://doi.org/10.1016/j.catcom.2006.06.021
  6. Meiers, R.; Holderich, W. F. Catal. Lett. 1999, 59, 161. https://doi.org/10.1023/A:1019024705869
  7. Edwards, J. K.; Solsona, B. E.; Landon, P.; Carley, A. F.; Herzing, A.; Kiely, C. J.; Hutchings, G. J. J. Catal. 2005, 236, 69. https://doi.org/10.1016/j.jcat.2005.09.015
  8. Burato, C.; Centomo, P.; Rizzoli, M.; Biffis, A.; Campestrini, S.; Corain, B. Adv. Synth. Catal. 2006, 348, 255. https://doi.org/10.1002/adsc.200505208
  9. Choudhary, V. R.; Samanta, C. J. Catal. 2006, 238, 28. https://doi.org/10.1016/j.jcat.2005.11.024
  10. Sato, S.; Takahashi, R.; Sodesawa, T.; Koubata, M. Appl. Catal. A: Gen. 2005, 284, 247. https://doi.org/10.1016/j.apcata.2005.02.003
  11. Niquille-Rothlisberger, A.; Prins, R. J. Catal. 2006, 242, 207. https://doi.org/10.1016/j.jcat.2006.06.009
  12. Sinha, A. K.; Seelan, S.; Tsubota, S.; Haruta, M. Angew. Chem. Int. Ed. 2004, 43, 1546. https://doi.org/10.1002/anie.200352900
  13. Chowdhury, B.; Bravo-Suarez, J. J.; Date, M.; Tsubota, S.; Haruta, M. Angew. Chem. 2006, 118, 426. https://doi.org/10.1002/ange.200502382
  14. Sacaliuc, E.; Beale, A. M.; Weckhuysen, B. M.; Nijhuis, T. A. J. Catal. 2007, 248, 235. https://doi.org/10.1016/j.jcat.2007.03.014
  15. Taylor, B.; Lauterbach, J.; Blau, G. E.; Delgass, W. N. J. Catal. 2006, 242, 142. https://doi.org/10.1016/j.jcat.2006.06.007
  16. Yap, N.; Andres, R. P.; Delgass, W. N. J. Catal. 2004, 226, 156. https://doi.org/10.1016/j.jcat.2004.05.016
  17. Park, E. D.; Hwang, Y.-S.; Lee, J. S. Catal. Commun. 2001, 2, 187. https://doi.org/10.1016/S1566-7367(01)00030-9
  18. Park, E. D.; Hwang, Y.-S.; Lee, C. W.; Lee, J. S. Appl. Catal. A: Gen. 2003, 247, 269. https://doi.org/10.1016/S0926-860X(03)00125-X
  19. Ma, S.; Li, G.; Wang, X. Chem. Lett. 2006, 35, 428. https://doi.org/10.1246/cl.2006.428
  20. Ma, S.; Li, G.; Wang, X. Chem. Eng. J. 2010, 156, 532. https://doi.org/10.1016/j.cej.2009.04.004
  21. Song, H.; Li, G.; Wang, X. Micropor. Mesopor. Mater. 2009, 120, 346. https://doi.org/10.1016/j.micromeso.2008.11.023
  22. Song, H.-Y.; Li, G.; Wang, X.-S.; Xu, Y.-J. Catal. Today 2010, 149, 127. https://doi.org/10.1016/j.cattod.2009.04.013
  23. Song, H.; Li, G.; Wang, X.; Chen, Y. Micropor. Mesopor. Mater. 2011, 139, 104. https://doi.org/10.1016/j.micromeso.2010.10.026
  24. Zhang, W.; Wang, J.; Tanev, P. T.; Pinnavia, T. J. Chem. Commun. 1996, 979.
  25. Li, G.; Guo, X.; Wang, X.; Zhao, Q.; Bao, X.; Han, X.; Lin, L. Appl. Catal. A: Gen. 1999, 185, 11. https://doi.org/10.1016/S0926-860X(99)00115-5
  26. Inoue, T.; Schmidt, M. A.; Jensen, K. F. Ind. Eng. Chem. Res. 2007, 46, 1153. https://doi.org/10.1021/ie061277w
  27. Hernandez, J. A.; Gomez, S.; Pawelec, B.; Zepeda, T. A. Appl. Catal. B: Environ. 2009, 89, 128. https://doi.org/10.1016/j.apcatb.2008.12.005
  28. Munteanu, G.; Ilieva, L.; Nedyalkova, R.; Andreeva, D. Appl. Catal. A: Gen. 2004, 277, 31. https://doi.org/10.1016/j.apcata.2004.08.021
  29. Samanta, C. Appl. Catal. A: Gen. 2008, 350, 133. https://doi.org/10.1016/j.apcata.2008.07.043
  30. Fan, W.; Duan, R. G.; Yokoi, T.; Wu, P.; Kubota, Y.; Tatsumi, T. J. Am. Chem. Soc. 2008, 130, 10150. https://doi.org/10.1021/ja7100399
  31. Suh, Y. W.; Kim, N. K.; Ahn, W. S.; Rhee, H. K. J. Mol. Catal. A: Chem. 2003, 198, 309. https://doi.org/10.1016/S1381-1169(02)00733-1
  32. Jin, C.; Li, G.; Wang, X.; Zhao, L.; Liu, L.; Liu, H.; Liu, Y.; Zhang, W.; Han, X.; Bao, X. Chem. Mater. 2007, 19, 1664. https://doi.org/10.1021/cm0625777
  33. Jin, C.; Li, G.; Wang, X.; Wang, Y.; Zhao, L.; Sun, D. Micropor. Mesopor. Mater. 2008, 111, 236. https://doi.org/10.1016/j.micromeso.2007.07.037
  34. Chinta, S.; Lunsford, J. H. J. Catal. 2004, 225, 249. https://doi.org/10.1016/j.jcat.2004.04.014
  35. Liu, Q.; Lunsford, J. H. Appl. Catal. A: Gen. 2006, 314, 94. https://doi.org/10.1016/j.apcata.2006.08.014
  36. Wang, X.; Nie, Y.; Lee, J. L. C.; Jaenicke, S. Appl. Catal. A: Gen. 2007, 317, 258. https://doi.org/10.1016/j.apcata.2006.10.038
  37. Ishihara, T.; Ohura, Y.; Yoshida, S.; Hata, Y.; Nishiguchi, H.; Takita, Y. Appl. Catal. A: Gen. 2005, 291, 215. https://doi.org/10.1016/j.apcata.2005.01.045
  38. Landon, P.; Collier, P. J.; Carley, A. F.; Chadwick, D.; Papworth, A. J.; Burrows, A.; Kiely, C. J.; Hutchings, G. J. Phys. Chem. Chem. Phys. 2003, 5, 1917. https://doi.org/10.1039/b211338b