• Title/Summary/Keyword: Active and reactive power

Search Result 446, Processing Time 0.023 seconds

A novel control strategy of active power filter type bidirectional UPS (능동필터형 쌍방향 UPS의 새로운 제어기법)

  • Kim, Je-Hong;Yeom, Sang-Ku;Choi, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2082-2084
    • /
    • 1997
  • This paper proposes a new control strategy of bidirectional uninterruptible power supply(UPS) with the performance of active power filter which compensate the harmonics and reactive power. To improve the transient response for the effective compensation in active power filter mode, it is considered that a simple and precise calculation method of the compensation reference current for the harmonics and reactive power compensation. So a novel closed-loop control strategy is used to calculate the reference current. And the current regulated instantaneous voltage control scheme is used in back-up power mode. The system model and control algorithm are described and analyzed, and the system Performance is verified by the simulation and experimental results.

  • PDF

The Anti-Islanding Method with Compensation of Load Reactive Power for Grid-connected Photovoltaic Generation System (계통 연계형 태양광 발전 시스템의 부하 무효전력 보상이 적용된 단독운전 인지법)

  • Jeong, Jin-Beom;Shin, Dong-Hyun;Kim, Hee-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.1
    • /
    • pp.58-64
    • /
    • 2008
  • In this paper, we present an active anti-islanding method with a load monitoring system using reactive power control. The proposed method, which is based on reactive power control, has fewer harmonics components than those in conventional methods, and it can minimize the reactive power component of the grid because it compensates the reactive power component with the load monitoring. The proposed quick islanding detection method was confirmed from the experimental results with an inverter for a 3kW photovoltaic system.

Static Voltage Stability Analysis using Reactive Power Loss Sensitivity (무효전력 손실감도를 이용한 정적 전압 안정도 해석)

  • Kim, Weon-Kyum;Lee, Bok-Yong;Lee, Sang-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 1999.11a
    • /
    • pp.52-55
    • /
    • 1999
  • In recent years, much attention has been paid to the voltage collapse phenomena. There has been reported many cases about the voltage collapse in many countries. These voltage collapse phenomena are known as the event that can occur due to reactive power deficits. This paper proposes an efficient method that can pursue the reactive power loss changes and gives the simple voltage collapse proximity indicator(VCPI) based on the reactive power loss sensitivities using optimal techniques. By comparing reactive power loss sensitivity with active power loss sensitivity, it is also proved that VCPI based on reactive power loss sensitivities is more effective. The developed VCPI is derived from the Jacobian matrix of Load Flow and the computational burden is very low and on-line implementation is possible. The proposed method is applied to a IEEE-14 bus test system and reliable and promising results are obtained.

  • PDF

Building Energy Management System with Next Day Demand Forecasting of Building Load (익일 빌딩 부하 예측 기능을 갖는 빌딩에너지관리시스템)

  • Choi, Sang-Yule
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.6
    • /
    • pp.119-123
    • /
    • 2014
  • The main purpose of reactive power compensation monitoring system is to manage factory electrical installation efficiently by On-Off switching reactive power compensation equipment. The existing reactive power compensation monitoring system is only able to be managed by operator whenever electrical installation needed reactive power. Therefore, it may be possible for propagating the installation's faults when operator make the unexpected mistakes. To overcome the unexpected mistakes, in this paper, the author presents a reactive power compensation monitoring system for factory electrical installation using active database. by using active database production rule, stated system can minimize unexpected mistake and can operate centralized monitoring system efficiently. Test results on the five factory electrical installations show that performance is efficient and robust.

Power System Stabilization Using SMES (초전도에너지 저장장치를 이용한 전력계통 안정도 향상)

  • 조병욱;박종근
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.34 no.6
    • /
    • pp.213-219
    • /
    • 1985
  • Superconducting Magnetic Energy Storage (SMES) system can be used for power system stabilization by absorbing or discharging active and reactive power through thyristor-comtrolled converters. In this paper, we have proposed a control algorithm that the active and reactive powers of SMES are simultaneously controlled to increase power system dynamic stability. The proposed method was applied to one machine-infinite and three machines and three load model systems. And it has been shown that the proposed algorithm is more effective in power system stabilization than the conventional one that only the active power of SMES is controlled. Eigenvalue sensitivity analysis method is introduced to estimate the optimal location of SMES in the sense of the power system oscillation mode.

  • PDF

Reduction of Power Ripples in a Doubly Fed Induction Generator Under Current Measurement Errors (DFIG의 전류 측정오차로 인한 발전전력의 리플 저감에 관한 연구)

  • Kim, Young-Il;Kim, Jang-Mok;Hwang, Seon-Hwan;Kim, Chan-Ki;Choy, Young-Do
    • Proceedings of the KIPE Conference
    • /
    • 2007.11a
    • /
    • pp.103-107
    • /
    • 2007
  • In doubly fed induction generators (DFIGs), control of rotor currents allows for adjustable speed operation, active, and reactive power control. This paper presents a DFIG control strategy that enhances the active and reactive power control with controllers that can compensate for the errors caused by current measurement path in the DFIG system. The errors can be divided into two categories: offset and scaling errors. These can induce the speed, active, and reactive power pulsations, which are one and two times the fundamental slip frequency in the DFIG. And these undesirable ripples can do the DFIG harm. In this paper, a new compensation algorithm is proposed. Therefore, the proposed algorithm has several advantages: to implement is easy; it require less computation time; it is robust with regard to the variation of the induction generator parameters. In this paper, a new algorithm is introduced by using the integral of phase currents to measure the current ripples of rotor-side converterin the DFIG system. The experiment results are shown the effectiveness of the proposed method.

  • PDF

A Study on Effective Enhancement of Load Power Factor Using the Load Power Factor Sensitivity of Generation Cost

  • Lee Byung Ha;Kim Jung-Hoon
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.3
    • /
    • pp.252-259
    • /
    • 2005
  • Various problems such as increase of power loss and voltage instability may often occur in the case of low load power factor. The demand of reactive power increases continuously with the growth of active power and restructuring of electric power companies makes the comprehensive management of reactive power a troublesome problem, so that the systematic control of load power factor is required. In this paper, the load power factor sensitivity of generation cost is derived and it is used for effectively determining the locations of reactive power compensation devices and for enhancing the load power factor appropriately. In addition, voltage variation penalty cost is introduced and integrated costs including voltage variation penalty cost are used for determining the value of load power factor from the point of view of economic investment and voltage regulation. It is shown through application to a large-scale power system that the load power factor can be enhanced effectively using the load power factor sensitivity and the integrated cost.

Study on Emergency Generator Capacity Selection(PG3) in the Chemical Plant (화학 플랜트에서의 비상발전기 용량선정 방안(PG3)에 관한 연구)

  • Lee, Seung-Jae;Jo, Man-Young;Kim, Se-Yong;Kim, Eun-Tae;Kang, Byoung-Wook;Park, Han-Min;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.12
    • /
    • pp.55-60
    • /
    • 2015
  • PG and RG methods are widely known method for calculating the capacity of the emergency generator in construction electrical installation. PG and RG methods are mainly used as a saving a life, fire protection, fire fighting in construction. Because no long distance between the emergency generator and electric motor feeder, the relatively small motor power in construction electrical installation, the capacity of generator in PG and RG methods are little problem of voltage and reactive power of generator. However in many cases the application of the PG and RG method is difficult in the Chemical Plant because it is long distance between the generator and the motor Feeder and motor capacity is very large. Motor starting power factor is about 0.2 lagging power factor and motor starting current is about 6times during motor staring. Also Most of the staring current component is a reactive power component. therefore, it is many cases that lack of reactive power and excess of allowable voltage drop limit and After selection of emergency diesel generator, problems happen during motor starting. Therefore, to be selection of effective emergency generator, active generator power, reactive power and the required reactive power during large motor starting should be considered in chemical plant. It is also required of the verification process through simulation because hand calculation is very difficult considering study cases.

A Study on the Improvement for Power Quality Problems Caused by Electrical Arc Furnace in Power Systems (전력계통에서 전기로 부하에 대한 전력품질 개선방안에 관한 연구)

  • Kim, Jae-Eon;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.3
    • /
    • pp.444-453
    • /
    • 2007
  • This paper deals with a powerful countermeasure for power quality problems caused by the operation of electrical arc furnace in bulk power systems. The rapid active load fluctuations of electrical arc furnace could produce several problems such as voltage flicker and active power oscillations. The typical methods using only the reactive power compensation have their own limitation in solving the power quality problems caused by active load variations. The coordination of both active and reactive power compensation is required to solve the power quality problems. This paper focuses on the impacts and the dynamic phenomena caused by the active load fluctuation. This paper proposes the optimal algorithm for the active power compensation based on the function of 1(n ratio and the concepts for the active power compensation. The results from a case study show that the proposed methods can be a practical tool for the power quality problems in power systems.

  • PDF

A Single Phase Multi-level Active Power Filter System using Instantaneous Reactive Power Harmonic Detection Method (순시 무효 전력 고조파 검출방법을 이용한 단상 멀티레벨 능동전력 필터)

  • Kim Soo-Hong;Kim Sung-Min;Lee Kang-Hee;Kim Yoon-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.296-301
    • /
    • 2005
  • This paper proposing the use of the Instantaneous reactive power method as a harmonic detection method for a single phase active filter system. This method is to detect harmonic components through d-q frame approach. The conventional use of d-q frame approach for a 3-phase system Is extended to the single phase system. The proposed system uses a multi-level inverter for harmonic compensation and the inverter is connected to the input side without using transformers. The proposed algorithm is verified by simulation and experiment.