• Title/Summary/Keyword: Active Matrix

Search Result 726, Processing Time 0.056 seconds

Realization of Multi-Channel Active Filters by Using Operational Amplifiers (연산 증폭기를 사용한 다중 챈넬능동휠타의 구현)

  • Chung Duk Kim
    • 전기의세계
    • /
    • v.24 no.4
    • /
    • pp.80-82
    • /
    • 1975
  • This paper presents a synthesis procedure of multi-channel active filters, which realizes an arbitrary N*N matrix of real rational functions in the complex variable s as a voltage transfer matrix. The resultant network reveals a transformerless grounded active RC(2N+1)-terminal network. The active network is consisted of six 2N-port RC networks with 2N single-ended operational amplifiers.

  • PDF

Organic Electrophosphorescent Device driven by Organic Thin-Film Transistor (유기 TFT로 구동한 유기 인광발광소자의 연구)

  • Kim, Yun-Myoung;Pyo, Sang-Woo;Kim, Jun-Ho;Shim, Jae-Hoon;Zyung, Tae-Hyung;Kim, Young-Kwan;Kim, Jung-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.312-315
    • /
    • 2001
  • Recently organic electroluminescent devices have been intensively investigated for using in full-color flat-panel display. Since the quantum efficiency of electrophosphorescent device decrease rapidly as the luminance increase, it is desirable to operate the electrophosphorescent display with active matrix rather than passive matrix. Here we report the study of driving electrophosphorescent diode with all organic thin film transistor(OTFT). The structure of electrophosphorescent diode is ITO/TPD/BCP:Ir(ppy)$_3$/BCP/Alq$_3$/Li:Al/Al. In OTFT. polymer is used as an insulator and pentacene as an active layer. Detailed performance of the integrated device will be discussed.

  • PDF

Organic Electrophosphorescent Device driven by Organic Thin-Film Transistor (유기 TFT로 구동한 유기 인광발광소자의 연구)

  • 김윤명;표상우;김준호;심재훈;정태형;김영관;김정수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.312-315
    • /
    • 2001
  • Recently organic electroluminescent devices have been intensively investigated for using in full-color flat-panel display. Since the quantum efficiency of electrophosphorescent device decrease rapidly as the luminance increase, it is desirable to operate the electrophosphorescent display with active matrix rather than passive matrix. Here we report the study of driving electrophosphorescent diode with all organic thin film transistor(OTFT). The structure of electrophosphorescent diode is ITO/TPD/BCP:Ir(ppy)$_3$/BCP/Alq$_3$/Li:Al/Al. In OTFT, Polymer is used as an insulator and pentacene as an active layer. Detailed performance of the integrated device will be discussed.

  • PDF

Stabilizing Technology of Pure Vitamin A using Triple Matrix Capsulation

  • Kim, In-Young;Lee, Young-Gue;Seong, Bo-Reum;Lee, Min-Hee;Lee, So-Ra;Choi, Seong-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.694-701
    • /
    • 2015
  • In order to get stabilized pure retinol in skin care cosmetics, developing the three layered matrix bead capsules were studied. This study relates to make a cosmetic composition using the three layered matrix capsule that could increase the stability of the active ingredient. A primary encapsulation, vitamin A (pure retinol) of active ingredient was perfectly capsulated into water-in-oil (Water-in-Oil: W/O) emulsion vesicle using PEG-10 dimethicone copolyol emulsifier. A secondary encapsulation of multiple emulsion of the water-in-oil-in-water (W/O/W) emulsion blending W/O emulsion using sucrose distearate of surfactant was developed using homogenizing emulsifying system. Pure retinol of active ingredient was stably capsulized to inside the W/O/W-multiple emulsion in order to load the triple matrix capsulation. By coating it with a polymer matrix base, encapsulated in the triple layered type, which were developed bead encapsulation of 2~10mm uniformly size. To show beautifully appearance capsulated bead type, these finish particles in this triple matrix layer were developed as a gold, green, dark brown, silver and blue color were encapsulated in the bead types. Structural particle certification of triple matrix layer was observed through SEM analysis. Stability of pure retinol was remained stable more than 99.7% for 30 days at $42^{\circ}C$ incubating conditions compared with non-capsule. This technology was applied in different formulations such as various sizes and colors that by applying the skin care cosmetics. In the future, this technology to encapsulate an unstable active ingredient, we expect to be expanded this application in the food and drug as a time delivery system.

A New Pixel Structure for Active-Matrix Organic Light Emitting Diode

  • Choi, Sang-Moo;Kwon, Oh-Kyong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.881-884
    • /
    • 2003
  • We propose a new pixel structure for Active Matrix OLED (AMOLED). The proposed pixel structure can display full color images by compensating threshold voltage (Vth) variation of driving TFTs. And we obtain an improved contrast ratio(C/R) of higher than 600:1

  • PDF

Printable organic TFT technologies for FPD applications

  • Ando, Masahiko
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.57-60
    • /
    • 2005
  • We have recently developed new organic TFT technologies such as self-aligned self-assembly (SALSA) process and a high-resolution color active-matrix LCD panel. A new method to realize high-resolution printable organic TFT array to drive active-matrix flat-panel display will be discussed.

  • PDF

Flexible Low Power Consumption Active-Matrix OLED Displays

  • Hack, Mike;Chwang, Anna;Hewitt, Richard;Brown, Julie;Lu, JengPing;Shih, ChinWen;Ho, JackSon;Street, R.A.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.609-613
    • /
    • 2005
  • Advanced mobile communication devices require a bright, high information content display in a small, light-weight, low power consumption package. In this paper we will outline our progress towards developing such a low power consumption active-matrix flexible OLED ($FOLED^{TM}$) display. Our work in this area is focused on three critical enabling technologies. The first is the development of a high efficiency long-lived phosphorescent OLED ($PHOLED{TM}$) device technology, which has now proven itself to be capable of meeting the low power consumption performance requirements for mobile display applications. Secondly, is the development of flexible active matrix backplanes, and for this our team are employing poly-Si TFTs formed on metal foil substrates as this approach represents an attractive alternative to fabricating poly-Si TFTs on plastic for the realization of first generation flexible active matrix OLED displays. Unlike most plastics, metal foil substrates can withstand a large thermal load and do not require a moisture and oxygen permeation barrier. Thirdly, the key to reliable operation is to ensure that the organic materials are fully encapsulated in a package designed for repetitive flexing. We also present progress in operational lifetime of encapsulated T-PHOLED pixels on planarized metal foil and discuss PHOLED encapsulation strategy.

  • PDF

Nanotechnologies in Displays : TFTs with Carbon Nanotubes and Semiconductor Nanowires.

  • Pribat, Didier;Cojocaru, Costel;Gowtham, M.;Eude, L.;Balan, A.;Bondavalli, P.;Legagneux, P.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1245-1248
    • /
    • 2007
  • We propose new approaches to thin film transistor fabrication that use carbon nanotubes and semiconductor nanowires as active elements. These nanomaterials which are essentially studied in the context of the post CMOS era will certainly impact the active matrix display industry in the near future.

  • PDF

An 8-bit Data Driving Circuit Design for High-Quality Images in Active Matrix OLEDs (고화질 Active Matrix OLED 디스플레이를 위한 8비트 데이터 구동 회로 설계)

  • Jo, Young-Jik;Lee, Ju-Sang;Yu, Sang-Dae
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.632-634
    • /
    • 2004
  • First for high-qualify images and reducing process-error and driving speed, the designed 8-bit data driving circuit consists of a constant transconductance bias circuit, D-F/Fs by shift registers using static transmission gates, 1st latch and 2nd latch by tristate inverters, level shifters, current steering segmented D/A converters by 4MSB thermometer decoder and 4LSB weighted type. Second, we designed gray amp for power saving. These data driving circuits are designed with $0.35-{\mu}m$ CMOS technologies at 3.3 V and 18 V power supplies and simulated with HSPICE.

  • PDF

Fabrication of Charge-pump Active-matrix OLED Display Panel with 64 ${\times}$ 64 Pixels

  • Na, Se-Hwan;Shim, Jae-Hoon;Kwak, Mi-Young;Seo, Jong-Wook
    • Journal of Information Display
    • /
    • v.7 no.1
    • /
    • pp.35-40
    • /
    • 2006
  • Organic light-emitting diode (OLED) display panel using the charge-pump (CP) pixel addressing scheme was fabricated, and the results show that it is applicable for information display. A CP-OLED panel with 64 ${\times}$ 64 pixels consisting of thin-film capacitors and amorphous silicon Schottky diodes was fabricated using conventional thin-film processes. The pixel drive circuit passes electrical current into the OLED cell during most of the frame period as in the thin-film transistor (TFT)-based active-matrix (AM) OLED displays. In this study, the panel was operated at a voltage level of below 4 V, and this operation voltage can be reduced by eliminating the overlap capacitance between the column bus line and the common electrode.