• Title/Summary/Keyword: Active Magnetic Bearing(AMB)

Search Result 51, Processing Time 0.024 seconds

Design of Cone-Shaped Magnetic Bearing Spindle System for High Speed Internal Grinding Machine (내면연삭기 고속 주축용 원추형 자기베어링시스템 설계)

  • Park, Jong-Gwon;No, Seung-Guk;Gyeong, Jin-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.2
    • /
    • pp.213-219
    • /
    • 2002
  • A cone-shaped active magnetic healing spindle system for high speed internal grinding with built-in motor that has 7.5kW power and maximum rotational speed of 50,000 rpm is designed and built. Using cone-shaped AMB(Active Magnetic Bearing) system, the axial rotor dick and magnets of conventional 5-axis actuating design can be eliminated. so this concept of design provides a simple magnetic bearing system. In this paper, the cone-shaped electromagnets are designed by magnetic circuit theory, and a de-coupled direct feedback PID controller is applied to control the coupled magnetic bearings. The designed crone-shaped AMB spindle system is built and constructed with a digital control system, which has TMS320C6702 DSP, 16 bit AD/DA, switching power amplifier and gap sensors. As the AMB system provides high damping ratio eliminating overshoot and resonance speed, this spindle runs up to 40,000 rpm stably with about 5${\mu}{\textrm}{m}$ of runout.

Robust Control System Design for an AMB by $H_{\infty}$ Controller ($H_{\infty}$ 제어기에 의한 능동 자기 베어링 시스템의 강인한 제어계 설계)

  • Chang, Y.;Yang, J.H.
    • Journal of Power System Engineering
    • /
    • v.7 no.3
    • /
    • pp.48-53
    • /
    • 2003
  • This paper deals with the control of a horizontally placed flexible rotor levitated by electromagnets in a multi-input/multi-output (MIMO) active magnetic bearing(AMB) system. AMB is a kind of novel high performance bearing which can suspend the rotor by magnetic force. Its contact-free manner between the rotor and stator results in it being able to operate under much higher speed than conventional rolling bearings with relatively low power losses, as well as being environmental-friendly technology for AMB system having no wear and no lubrication requirements. In this MIMO AMB system, the rotor is a complex mechanical system, it not only has rigid body characteristics such as translational and slope motion but also bends as a flexible body. Reduced order nominal model is computed by consideration of the first 3 mode shapes of rotor dynamics. Then, the $H_{\infty}$ control strategy is applied to get robust controller. Such robustness of the control system as the ability of disturbance rejection and modeling error is guaranteed by using $H_{\infty}$ control strategy. Simulation results show the validation of the designed control system and the modeling method to the rotor.

  • PDF

Fuzzy Control of Magnetic Bearing System Using Modified PDC Algorithm

  • Joongseon Joh;Lee, Sangmin
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.337-342
    • /
    • 1998
  • A new fuzzy control algorithm for the control of active magnetic bearing (AMB) systems is proposed in this paper. It combines PDC design of Joh et al. [8][9] and Namdani-gype control rules using fuzzy singletons to handle the nonlinear characteristics of AMB systems efficiently. They are named fine mode control and rough mode control , respectively. The rough mode control yields the fastest response for large deviation of the rotor and the fine mode control fives desired transient response for small deviation of the rotor. The proposed algorithm is applied a AMB systems to verify the performance of the method, The comparison of the proposed method to a linear controller using a linearized model about the equilibrium point and PDC algorithm in [7] show the superiority of the proposed algorithm.

  • PDF

Identification of Dynamic Characteristics of Squeeze Film Damper Using Active Magnetic Bearing System as an Exciter (자기 베어링 시스템을 가진기로 이용한 스퀴즈 필름 댐퍼의 동특성 계수 규명)

  • 김근주;이종원
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.7
    • /
    • pp.508-516
    • /
    • 2003
  • The dynamic characteristics of an ell-lubricated, short squeeze film damper (SFD) with a central feeding groove are derived based on a theoretical analysis considering the effect of a groove, and identified experimentally using an Active Magnetic Bearing (AMB) system as an exciter. In order to get the theoretical solution, the fluid film forces of the grooved SFD are analytically derived so that the dynamic coefficients of the SFD can be expressed in terms of its design parameters. For the experimental validation of the analysis, a test rig using an AMB as an exciter is proposed. As an exciter. the AMB represents a mechatronic device to levitate and position the test Journal without any mechanical contact, to generate relative motions of the Journal inside the tested SFD and to measure the generated displacements during experiments with fairly high accuracy. Using this test rig, experiments are extensively conducted with various values of clearance, which Is one of the most important design parameters. in order to investigate its effect on the dynamic characteristics and the performance of the SFD. Damping and Inertia coefficients of the SFD that are experimentally Identified are compared with the analytical results to demonstrate the effectiveness of the applied analysis. It Is also shown that the AMB is an ideal device for tests of SFDs.

Identification of Active Magnetic Bearing Actuator Using Unbalance Compensation Method (불균형 보상법을 이용한 능동 자기베어링 구동기의 동특성 규명)

  • 김철순;이종원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.261-266
    • /
    • 1998
  • In this study, the in-situ parameter identification method for active magnetic bearing (AMB) actuator based on an open-loop balancing scheme is proposed. The scheme utilizes the relation between the compensating voltage and the known unbalance force. Main advantage of this method is that it is easy to use, yet it gives the actuator dynamics on the actual operating condition of an AMB system. The experimental results show that the proposed scheme compensates the known unbalance accurately and consequently identifies the actuator dynamics effectively.

  • PDF

In-situ Runout Idientification in Active Magnetic Bearing System by Extended Influence Coefficient Method (확장된 영향계수법을 이용한 능동자기베어링의 운전상황에서 측정체 진원도 오차 규명)

  • 김철순;이종원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.154-159
    • /
    • 1995
  • In this study, an efficient, yet easy to use, in-situ runout identification scheme by using extended influence coefficient method is presented for active magnetic bearing(AMB) systems. It is shown experimentally that the proposed scheme successfully identifies and eliminates the troublesome runout of the well balanced AMB system in the laboratory so that a high precision spindle system can be achieved, while it is in operation.

  • PDF

Robust Fuzzy Controller for Active Magnetic Bearing System with 6-DOF (6 자유도를 갖는 능동 자기베어링 시스템의 강인 퍼지 제어기)

  • Sung, Hwa-Chang;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.3
    • /
    • pp.267-272
    • /
    • 2012
  • This paper propose the implementation of robust fuzzy controller for controlling an active magnetic bearing (AMB) system with 6 degree of freedom (DOF). A basic model with 6 DOF rotor dynamics and electromagnetic force equations for conical magnetic bearings is proposed. The developed model has severe nonlinearity and uncertainty so that it is not easy to obtain the control objective. For solving this problem, we use the Takagi-Sugeno (T-S) fuzzy model which is suitable for designing fuzzy controller. The control object in the AMB system enables the rotor to rotate without any phsical contact by using magnetic force. In this paper, we analyze the nonlinearity of the active magnetic bearing system by using fuzzy control algorithm and desing the robust control algorithm for solving the parameter variation. Simulation results for AMB are demonstrated to visualize the feasibility of the proposed method.

Electromagnetic Field Analysis of Magnetic Bearing due to Stator Structure (스테이터 구조에 의한 마그네틱 베어링의 전자장해석)

  • Kim, Ki-Joon;Shin, Cheol-Gi
    • 전자공학회논문지 IE
    • /
    • v.48 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • In this study, it carried out Electromagnetic Field Analysis of Magnetic Bearing due to stator structure and it got the electrical characteristics of 3 structure types of AMB(Active magnetic bearing) systems to get optimal design criteria. The results of simulation in three types of AMB, using FEM method, type 1, 2, and 3 had many paths to move magnetic flux vectors from N pole to S pole and magnetic flux lines are transferred to rotor as a shaft. The paths help to rotate the rotors. So, their data of electrical properties carry out design of magnetic bearing system and the data help to make design criteria.

System Modeling and Robust Control of an AMB Spindle : Part II A Robust Controller Design and its Implementation

  • Ahn, Hyeong-Joon;Han, Dong-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.1855-1866
    • /
    • 2003
  • This paper discusses an entire procedure for a robust controller design and its implementation of an AMB (active magnetic bearing) spindle, which is part II of the papers presenting details of system modeling and robust control of an AMB spindle. Since there are various uncertainties in an AMB system and reliability is the most important factor for applications, robust control naturally gains attentions in this field. However, tight evaluations of various uncertainties based on experimental data and appropriate performance weightings for an AMB spindle are still ongoing research topics. In addition, there are few publications on experimental justification of a designed robust controller. In this paper, uncertainties for the AMB spindle are classified and described based on the measurement and identification results of part I, and an appropriate performance weighting scheme for the AMB spindle is developed. Then, a robust control is designed through the mixed ${\mu}$ synthesis based on the validated accurate nominal model of part I, and the robust controller is reduced considering its closed loop performance. The reduced robust controller is implemented and confirmed with measurements of closed-loop responses. The AMB spindle is operated up to 57,600 rpm and performance of the designed controller is compared with a benchmark PID controller through experiments. Experiments show that the robust controller offers higher stiffness and more efficient control of rigid modes than the benchmark PID controller.