• 제목/요약/키워드: Active Magnetic Bearing

검색결과 162건 처리시간 0.027초

자기부상용 Halbach 자석 배열을 이용한 선형 능동자기 베어링의 최적설계 (Optimal design of a Linear Active Magnetic Bearing using Halbach magnet array for Magnetic levitation)

  • 이학준;안다훈
    • 한국산학기술학회논문지
    • /
    • 제22권1호
    • /
    • pp.792-800
    • /
    • 2021
  • 본 논문은 Halbach 자석 배열을 사용하여 새로운 구조의 선형 능동자기 베어링 개발을 제시하고자 하였다. 선형 능동자기 베어링은 자석 간 발생하는 자중 보상 능력과 코일에 전류를 인가함으로서 발생하는 동적 힘을 이용하여 반도체 장비, 가공 장비 등 다양한 산업분야에서 적용되고 있다. 기존의 선형 능동자기 베어링은 크기에 비해 동적 힘이 낮은 문제점이 있다. 따라서 본 논문에서는 기존 보다 높은 동적 힘을 발휘하는 선형 능동자기 베어링을 개발하기 위해 시뮬레이션을 통해 기존 구조를 분석하고 새로운 구조를 제안하였다. 제안된 새로운 구조의 선형 능동 자기베어링을 최적화하기 위해서 모델링 및 최적 설계를 수행하였다. Sequential Quadratic Programming을 사용하여 제안된 선형 능동자기 베어링의 기하학적 설계 변수에 대해 최적의 설계가 수행되었으며, 최적설계 된 선형 능동자기 베어링의 설계성능은 정적 힘 45.063 N, 로렌츠 힘 상수 19.543 N/A 로 기존보다 높은 동적 힘을 발휘하는 것이 확인되었다.

Fault Tolerant Homopolar Magnetic Bearings with Flux Invariant Control

  • Na Uhn-Joo
    • Journal of Mechanical Science and Technology
    • /
    • 제20권5호
    • /
    • pp.643-651
    • /
    • 2006
  • The theory for a novel fault-tolerant 4-active-pole homopolar magnetic bearing is developed. If any one coil of the four coils in the bearing actuator fail, the remaining three coil currents change via an optimal distribution matrix such that the same opposing pole, C-core type, control fluxes as those of the un-failed bearing are produced. The hompolar magnetic bearing thus provides unaltered magnetic forces without any loss of the bearing load capacity even if any one coil suddenly fails. Numerical examples are provided to illustrate the novel fault-tolerant, 4-active pole homopolar magnetic bearings.

A Four Pole, Double Plane, Permanent Magnet Biased Homopolar Magnetic Bearing with Fault-Tolerant Capability

  • Na, Uhn-Joo
    • 한국산업융합학회 논문집
    • /
    • 제24권6_1호
    • /
    • pp.659-667
    • /
    • 2021
  • This paper develops the theory for a novel fault-tolerant, permanent magnet biased, 4-active-pole, double plane, homopolar magnetic bearing. The Lagrange Multiplier optimization with equality constraints is utilized to calculate the optimal distribution matrices for the failed bearing. If any of the 4 coils fail, the remaining three coil currents change via a novel distribution matrix such that the same opposing pole, C-core type, control fluxes as those of the un-failed bearing are produced. Magnetic flux coupling in the magnetic bearing core and the optimal current distribution helps to produce the same c-core fluxes as those of unfailed bearing even if one coil suddenly fails. Thus the magnetic forces and the load capacity of the bearing remain invariant throughout the failure event. It is shown that the control fluxes to each active pole planes are successfully isolated. A numerical example is provided to illustrate the new theory.

자기 베어링과 영구자석 베어링으로 이루어진 시스템의 비 연성 제어 (Decoupled Control of Active and Permanent Magnetic Bearing System)

  • 박상현;이종원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.63-70
    • /
    • 2008
  • In this paper, we propose a bearing redundant coordinates and decoupled PD controller for 5-axes active magnetic bearing system, which consists of two bearing parts such as three-pole hybrid active magnetic bearing for stabilize the radial direction and ring-type permanent magnetic bearing stabilizing in axial and tilting motion. Based on derived system equation with decoupled control scheme, we conduct the modal analysis and measure of modal controllability and observability.

  • PDF

능동 자기베어링에서 LQR방법에 의한 PID제어기 설계 (PID Controller Design using LQR Method in the Active Magnetic Bearing)

  • 정형근;서병설
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 V
    • /
    • pp.2509-2512
    • /
    • 2003
  • The active magnetic bearing(AMB) has statey-state error of the displacement by the external force. This paper presents a PID controller design using LQR method in the active magnetic bearing to compensate for the displacement by the external force.

  • PDF

초정밀 스테이지를 위한 능동형 자기예압 공기베어링에 관한 연구 (Study on the Linear Air Bearing Stage with Actively Controllable Magnetic Preload)

  • 노승국;박천홍;김수현;곽윤근
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.135-136
    • /
    • 2006
  • A precise linear motion stage supported by magnetically preloaded air bearings is introduced where preloading magnetic actuators are combined with permanent magnets and coils to adjust air bearing clearance by controlling magnetic force actively. Each of the magnetic actuators has a permanent magnet generating nominal magnetic flux for required preload and a coil to perturb the magnetic force resulting adjustment of air-bearing clearance. The characteristics of porous aerostatic bearing are analyzed by numerical analysis, and analytic magnetic circuit model is driven for magnetic actuator to calculate nominal preload and variation of force due to current. A 1-axis linear stage motorized with a coreless linear motor and a linear encoder is built for verifying this design concept. With the active magnetic preloading actuators controlled with DSP board and PWM power amplifiers, the active on-line adjusting tests about the vertical, pitching and rolling motion were performed, and the result shows very good linearity.

  • PDF

베이스 운동을 받는 다자유도 능동자기베어링계에서 외란 관측기 기반 슬라이딩모드 제어 (Disturbance Observer Based Sliding Mode Control for Multi-DOF Active Magnetic Bearing System Subject to Base Motion)

  • 강민식
    • 한국소음진동공학회논문집
    • /
    • 제14권11호
    • /
    • pp.1182-1194
    • /
    • 2004
  • This paper addresses the application of an active magnetic bearing (AMB) system to levitate the elevation axis of an electro-optical sight mounted on a moving vehicle. In this type of system, it is desirable to retain the elevation axis in an air-gap between magnetic bearing stators while the vehicle is moving. To eliminate disturbance responses, a disturbance observer based sliding mode control is developed. This control can decouple disturbance observation dynamics from sliding mode dynamics and preserves the robustness of the sliding control. The sliding surfaces are designed in the consideration of scattering of received image. The proposed control is applied to a 2-DOF active magnetic bearing system subject to base motion. Along with experimental results, the feasibility of the proposed technique is illustrated.

50,000rpm급 초고속 소형 정밀모터용 능동 자기베어링 시스템 제어 및 설계 (Control and Design of 50,000rpm Class Active Magnetic Bearing System for High Speed-Small Size Precision Motor)

  • 강규홍
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권8호
    • /
    • pp.408-415
    • /
    • 2006
  • This paper deal with control and design of 50,000rpm class Active Magnetic Bearing(AMB) system for high speed precision motor. In the design of AMB system, the design parameters adopted high robust rotor shaft, Active Magnetic Bearing, sensor and control system. In the design of Magnetic Bearing, 2-D Finite Element Method(FEM) is used and transfer matrix method is using for rotor dynamics. The control accuracy of high speed AMB system is demonstrated by experimentations.

A Six Pole Permanent Magnet Biased Homopolar Magnetic Bearing with Fault-Tolerant Capability

  • Uhn Joo Na
    • 한국산업융합학회 논문집
    • /
    • 제26권2_1호
    • /
    • pp.231-238
    • /
    • 2023
  • This paper develops the theory for a novel fault-tolerant, permanent magnet biased, 6-active-pole, homopolar magnetic bearing. The Lagrange Multiplier optimization with equality constraints is utilized to calculate the optimal distribution matrices for the failed bearing. some numerical examples of distribution matrices are provided to illustrate the new theory. Simulations show that very much the same dynamic responses (orbits or displacements) are maintained throughout failure events (up to any combination of 3 coils failed for the 6 pole magnetic bearing) while currents and fluxes change significantly. The overall load capacity of the bearing actuator is reduced as coils fail. The same magnetic forces are then preserved up to the load capacity of the failed bearing.

초정밀 자기부상 스테이지의 위치제어를 위한 영구자석형 선형 자기베어링의 개발 (Permanent Magnet Biased Linear Magnetic Bearing for High-Precision Maglev Stage)

  • 이상호;장지욱;김의석;한동철
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.164-169
    • /
    • 2001
  • The active magnetic bearing has many advantages - an active positioning, no contact and lubrication free motion - and is widely used in high precision motion stages. But, the conventional magnetic bearings composed of electromagnets only are power consuming due to their bias current and have the excessive heat generation, which can make the repeatability of the positioning system worse. To overcome this drawback, we developed a novel permanent magnet (PM) biased linear magnetic bearing for a high precision magnetically levitated stage. The permanent magnets provide a bias flux and generate a bias force, and the electromagnet increases or reduces a flux of the permanent magnets and gives a levitation force. This paper presents a theoretical magnetic circuit analysis, FEM analysis and experimental data from the 1-DOF tests, and compares the theoretical power consumption of the electromagnetic bearings and the PM biased linear magnetic bearings. The PM biased linear magnetic bearing presented in this paper gives better load capacity but lower power consumption than a conventional electromagnetic bearing and will be adopted in our 6-DOF high precision linear positioning maglev stage.

  • PDF