• 제목/요약/키워드: Active Force control

검색결과 528건 처리시간 0.03초

Optimal Design of Discrete Time Preview Controllers for Semi-Active and Active Suspension systems

  • Youn, Il-Joong
    • Journal of Mechanical Science and Technology
    • /
    • 제14권8호
    • /
    • pp.807-815
    • /
    • 2000
  • In this paper, modified discrete time preview control algorithms for active and semi-active suspension systems are derived based on a simple mathematical 4 DOF half-car model. The discrete time preview control laws for ride comfort are employed in the simulation. The algorithms for MIMO system contain control strategies reacting against body forces that occur at cornering, accelerating, braking, or under payload, in addition to road disturbances. Matlab simulation results for the discrete time case are compared with those for the continuous time case and the appropriateness of the discrete time algorithms are verified by the of simulation results. Passive, active, and semi-active system responses to a sinusoidal input and an asphalt road input are analysed and evaluated. The simulation results show the extent of performance degradation due to numerical errors related to the length of the sampling time and time delay.

  • PDF

Optimum design of a sliding mode control for seismic mitigation of structures equipped with active tuned mass dampers

  • Eliasi, Hussein;Yazdani, Hessam;Khatibinia, Mohsen;Mahmoudi, Mehdi
    • Structural Engineering and Mechanics
    • /
    • 제81권5호
    • /
    • pp.633-645
    • /
    • 2022
  • The active tuned mass damper (ATMD) is an efficient and reliable structural control system for mitigating the dynamic response of structures. The inertial force that an ATMD exerts on a structure to attenuate its otherwise large kinetic energy and undesirable vibrations and displacements is proportional to its excursion. Achieving a balance between the inertial force and excursion requires a control law or feedback mechanism. This study presents a technique for the optimum design of a sliding mode controller (SMC) as the control law for ATMD-equipped structures subjected to earthquakes. The technique includes optimizing an SMC under an artificial earthquake followed by testing its performance under real earthquakes. The SMC of a real 11-story shear building is optimized to demonstrate the technique, and its performance in mitigating the displacements of the building under benchmark near- and far-fault earthquakes is compared against that of a few other techniques (proportional-integral-derivative [PID], linear-quadratic regulator [LQR], and fuzzy logic control [FLC]). Results indicate that the optimum SMC outperforms PID and LQR and exhibits performance comparable to that of FLC in reducing displacements.

Design and Experimental Evaluation of a Robust Force Controller for a 6-Link Electro-Hydraulic Manipulator via H$_{\infty}$ Control Theory

  • Ahn, Kyoung-Kwan;Lee, Byung-Ryong;Yang, Soon-Yong
    • Journal of Mechanical Science and Technology
    • /
    • 제17권7호
    • /
    • pp.999-1010
    • /
    • 2003
  • Uninterrupted power supply has become indispensable during the maintenance task of active electric power lines as a result of today's highly information-oriented society and increasing demand of electric utilities. This maintenance task has the risk of electric shock and the danger of falling from high place. Therefore it is necessary to realize an autonomous robot system using electro-hydraulic manipulators because hydraulic manipulators have the advantage of electric insulation and power/mass density. Meanwhile an electro-hydraulic manipulator using hydraulic actuators has many nonlinear elements, and its parameter fluctuations are greater than those of an electrically driven manipulator. So it is relatively difficult to realize not only stable contact work but also accurate force control for the autonomous assembly tasks using hydraulic manipulators. In this paper, the robust force control of a 6-link electro-hydraulic manipulator system used in the real maintenance task of active electric lines is examined in detail. A nominal model for the system is obtained from experimental frequency responses of the system, and the deviation of the manipulator system from the nominal model is derived by a multiplicative uncertainty. Robust disturbance observers for force control are designed using this information in an H$\_$$\infty$/ framework, and implemented on the two different setups. Experimental results show that highly robust force tracking by a 6-link electro-hydraulic manipulator could be achieved even if the stiffness of environment and the shape of wall change.

입력크기 변화에 따른 외팔보의 능동진동제어 경향 (Performance tendency of active vibration control on a cantilever beam with variation of input amplitude)

  • 권오철;양인형;윤지현;이정윤;오재응
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.305-344
    • /
    • 2008
  • This paper presents the active control of flexible beam vibration. The beam was excited by a steady-state point force by mini shaker and the control was performed by mini shaker. To perform active control, least-mean-square (LMS) algorithm was used because it can easily obtain the complex transfer function in real-time. So an adaptive controller based on Filtered-X LMS algorithm was used and the controller was defined by minimizing the square of the response at a location of error sensor. In order to fine out performance tendency, input amplitude was changed in several cases and active vibration control was performed.

  • PDF

반경방향-축방향 일체형 4극 전자기 베어링의 설계 (II) - 바이어스 자속 공유형 - (Design of Combined Radial and Axial 4-pole Electromagnetic Bearing (II) - with Coupled Bias Flux -)

  • 김하용;김승종
    • 대한기계학회논문집A
    • /
    • 제29권12권
    • /
    • pp.1567-1573
    • /
    • 2005
  • This paper introduces a new active magnetic bearing(AMB) that can provide both radial and axial control functions in one bearing unit without axial disk. It has a structure of double four-pole AMB or a four-pole AMB where each core is split into two axially. The cores have two kinds of coil winding; they independently generate fluxes on the planes perpendicular or parallel to the shaft. For the radial control action, it works just like a conventional four-pole AMB. Meanwhile, for the axial control, it uses the Lorentz force generated by the interaction of the bias flux for radial control and the axial control flux. In this paper, the proposed structure, principle, and design process based on magnetic flux analysis are introduced, and its feasibility is experimentally verified by using a simple PD control algorithm with a feedforward loop to compensate the coupled flux effect.

반경방향-축방향 일체형 4극 전자기 베어링의 설계 (I) - 바이어스 자속 독립형 - (Design of Combined Radial and Axial 4-pole Electromagnetic Bearing (I) - with Uncoupled Bias Flux -)

  • 김하용;김승종
    • 대한기계학회논문집A
    • /
    • 제29권12권
    • /
    • pp.1561-1566
    • /
    • 2005
  • In this paper, a new compact active magnetic bearing(AMB) is proposed in which radial and axial bearings are integrated in one bearing unit. It consists of four U-shaped cores circumferentially connected by yokes and two-layer coils for radial and axial controls. For the radial control action, it has the same principle as conventional homopolar AMBs, while for the axial control, it uses the Lorentz force generated by the interaction of the bias flux for radial control and the axial control flux. The proposed structure makes it easy to design a compact AMB because it has no disk for axial control. This paper introduces the proposed structure, principle, and design process based on the magnetic flux analysis. By using a control algorithm with feedforward action to compensate the coupled flux effect, the feasibility of the proposed AMB is experimentally verified.

NEW MODELING AND CONTROL OF AN ASYMMETRIC HYDRAULIC ACTIVE SUSPENSION SYSTEM

  • Kim, Wanil;Sangchul Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.490-495
    • /
    • 1998
  • In this paper an asymmetric hydraulic actuator which consists of single acting cylinder and servo valve is modeled for a quarter car active suspension system. This model regards the force as an internal state rather than a control input. The control input of the model is the sum of oil flows that pass through the valve's orifices. The resulting dynamic equation in the state space ap-pears a feedback connection of a nominal linear time in-variant term with a nonlinear bounded uncertain block. Since this model makes it possible to eliminate the force control phase, analysis and controller design are made straightforward and simple. Well known LQR method is then applied. Simulation and test rig experiment show the effectiveness of this approach in modeling and control.

  • PDF

Self-powered hybrid electromagnetic damper for cable vibration mitigation

  • Jamshidi, Maziar;Chang, C.C.;Bakhshi, Ali
    • Smart Structures and Systems
    • /
    • 제20권3호
    • /
    • pp.285-301
    • /
    • 2017
  • This paper presents the design and the application of a new self-powered hybrid electromagnetic damper that can harvest energy while mitigating the vibration of a structure. The damper is able to switch between an energy harvesting passive mode and a semi-active mode depending on the amount of energy harvested and stored in the battery. The energy harvested in the passive mode resulting from the suppression of vibration is employed to power up the monitoring and electronic components necessary for the semi-active control. This provides a hybrid control capability that is autonomous in terms of its power requirement. The proposed hybrid circuit design provides two possible options for the semi-active control: without energy harvesting and with energy harvesting. The device mechanism and the circuitry that can drive this self-powered electromagnetic damper are described in this paper. The parameters that determine the device feasible force-velocity region are identified and discussed. The effectiveness of this hybrid damper is evaluated through a numerical simulation study on vibration mitigation of a bridge stay cable under wind excitation. It is demonstrated that the proposed hybrid design outperforms the passive case without external power supply. It is also shown that a broader force range, facilitated by decoupled passive and semi-active modes, can improve the vibration performance of the cable.

전자기 액츄애이터를 이용한 능동 진동제어시스템 (Active Vibration Control System Using Electromagnet Actuator)

  • 이주훈;전정우;황돈하;강동식;최영규
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 D
    • /
    • pp.2809-2811
    • /
    • 2005
  • In this paper, we address an active vibration control system, which suppresses the vibration engaged by magnetically levitated stage. The stage system consists of a levitating platen with four permanent magnetic linear synchronous motors in parallel. Each motor generates vertical force for suspension against gravity and propulsion force horizontally as well. This stage can generate six degrees of freedom motion via the vertical and horizontal forces. In the stage system, which represents the settling-time critical system, the motion of the platen vibrates mechanically. We designed an active vibration control system for suppressing vibration due to the stage moving. The command feedforward with inertial feedback algorithm is used for solving stage system's critical problems. The components of the active vibration control system are accelerometers for detecting stage tables's vibrations, a digital controller with high precise signal converters, and electromagnetic actuators.

  • PDF

Robust Force Control of Electro-hydraulic Manipulator in the Field Task

  • Cho, Yong-Rae;Ahn, Kyoung-Kwan;Yang, Soon-Yong;Lee, Byung-Ryong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.134.4-134
    • /
    • 2001
  • Hydraulically driven manipulators are superior to electrically driven ones in the power density and electrical insulation. But an electro-hydraulic manipulator using hydraulic actuators has many nonlinear elements, and its parameter fluctuations are greater than those of electrically driven manipulator. So it is relatively difficult to realize not only stable contact work but also accurate force control for the autonomous field tasks such as the maintenance task of high voltage active electric line or the automatic excavation task by hydraulic excavator. In this report, we propose robust force control algorithm, which can be applied to the real field task such as the construction field, nuclear plant and so on. Proposed force controller has the same structure as that of disturbance observer for position control. The difference between force and position disturbance ...

  • PDF