• 제목/요약/키워드: Active Damping

검색결과 481건 처리시간 0.025초

Stability Analysis and Improvement of the Capacitor Current Active Damping of the LCL Filters in Grid-Connected Applications

  • Xu, Jinming;Xie, Shaojun;Zhang, Binfeng
    • Journal of Power Electronics
    • /
    • 제16권4호
    • /
    • pp.1565-1577
    • /
    • 2016
  • For grid-connected LCL-filtered inverters, dual-loop current control with an inner-loop active damping (AD) based on capacitor current feedback is generally used for the sake of current quality. However, existing studies on capacitor current feedback AD with a control delay do not reveal the mathematical relation among the dual-loop stability, capacitor current feedback factor, delay time and LCL parameters. The robustness was not investigated through mathematical derivations. Thus, this paper aims to provide a systematic study of dual-loop current control in a digitally-controlled inverter. At first, the stable region of the inner-loop AD is derived. Then, the dual-loop stability and robustness are analyzed by mathematical derivations when the inner-loop AD is stable and unstable. Robust design principles for the inner-loop AD feedback factor and the outer-loop current controller are derived. Most importantly, ensuring the stability of the inner-loop AD is critical for achieving high robustness against a large grid impedance. Then, several improved approaches are proposed and synthesized. The limitations and benefits of all of the approaches are identified to help engineers apply capacitor current feedback AD in practice.

Nonlinear semi-active/passive retrofit design evaluation using incremental dynamic analysis

  • Rodgers, Geoffrey W.;Chase, J. Geoffrey;Roland, Thomas;Macrae, Gregory A.;Zhou, Cong
    • Earthquakes and Structures
    • /
    • 제22권2호
    • /
    • pp.109-120
    • /
    • 2022
  • Older or damaged structures can require significant retrofit to ensure they perform well in subsequent earthquakes. Supplemental damping devices are used to achieve this goal, but increase base shear forces, foundation demand, and cost. Displacement reduction without increasing base shear is possible using novel semi-active and recently-created passive devices, which offer energy dissipation in selected quadrants of the force-displacement response. Combining these devices with large, strictly passive energy dissipation devices can offer greater, yet customized response reductions. Supplemental damping to reduce response without increasing base shear enables a net-zero base shear approach. This study evaluates this concept using two incremental dynamic analyses (IDAs) to show displacement reductions up to 40% without increasing base shear, more than would be achieved for either device alone, significantly reducing the risk of response exceeding the unaltered structural case. IDA results lead to direct calculation of reductions in risk and annualized economic cost for adding these devices using this net-zero concept, thus quantifying the trade-off. The overall device assessment and risk analysis method presented provides a generalizable proof-of-concept approach, and provides a framework for assessing the impact and economic cost-benefit of using modern supplemental energy dissipation devices.

자동차 충격흡수장치용 감쇠력 조정 전자제어장치 연구 (A Study of Electrical Control Kit for Damping Force of Automotive Shock Absorber)

  • 손일선;이정구
    • 한국자동차공학회논문집
    • /
    • 제16권3호
    • /
    • pp.1-6
    • /
    • 2008
  • The performance of shock absorber is directly related to the car behavior and performance, both for handling and comfort. Most of compact car are assembled the passive shock absorber for cost effect but some of compact driver want better performance of shock absorber than standard parts. Therefore, they want the semi-active suspension control system instead of standard damper system. But they only can change the mechanical damping control shock absorber at A/S market. The mechanical damping control shack absorber can not vary the damping force in driving condition so they do not satisfy the mechanical damping control shock absorber system. In this study, electrically damping force controlled shock absorber system is developed based on the mechanical damping force control damper system. This system can vary damping force by switch on dashboard in driving condition. And, this system can satisfy the requirement of tuning market. Therefore, it is expected the system to show the engineering capability of korean damper company and to increase export market share to oversea damper market.

Direct assignment of the dynamics of a laboratorial model using an active bracing system

  • Moutinho, C.;Cunha, A.;Caetano, E.
    • Smart Structures and Systems
    • /
    • 제8권2호
    • /
    • pp.205-217
    • /
    • 2011
  • This article describes the research work involving the implementation of an Active Bracing System aimed at the modification of the initial dynamics of a laboratorial building structure to a new desired dynamics. By means of an adequate control force it is possible to assign an entirely new dynamics to a system by moving its natural frequencies and damping ratios to different values with the purpose of achieving a better overall structural response to external loads. In Civil Engineering applications, the most common procedures for controlling vibrations in structures include changing natural frequencies in order to avoid resonance phenomena and increasing the damping ratios of the critical vibration modes. In this study, the actual implementation of an active system is demonstrated, which is able to perform such modifications in a wide frequency range; to this end, a plane frame physical model with 4 degrees-of-freedom is used. The Active Bracing System developed is actuated by a linear motor controlled by an algorithm based on pole assignment strategy. The efficiency of this control system is verified experimentally by analyzing the control effect obtained with the modification of the initial dynamic parameters of the plane frame and observing the subsequent structural response.

준능동 TMD를 이용한 단자유도 구조물의 진동제어 (Vibration control of an SDOF structure using semi-active tuned mass damner)

  • 김현수;이동근
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2006년도 학술발표회 논문집
    • /
    • pp.424-431
    • /
    • 2006
  • Many types of tuned mass dampers (TMDs), such as active TMDs, multiple TMDs, hybrid TMDs etc., have been studied to effectively reduce the dynamic responses of a structure subjected to various types of dynamic loads. In this study, we replace a passive damper by a semi-active tuned mass damper to improve the control performance of conventional TMDs (STMD). An idealized variable damping device is used as semi-active dampers. These semi-active dampers can change the properties of TMDs in real time based on the dynamic responses of a structure. The control performance of STMD is investigated with respect to various types of excitation by numerical simulation. Groundhook control algorithm is used to appropriately modulate the damping force of semi-active dampers. The control effectiveness between STMD and a conventional passive TMD, both under harmonic and random excitations, is evaluated and compared for a single-degree-of-freedom (SDOF) structure. Excitations are applied to the structure as a dynamic force and ground motion, respectively. The numerical studies showed that the control effectiveness of STMD is significantly superior to that of the passive TMD, regardless of the type of excitations.

  • PDF

Effectiveness of piezoelectric fiber reinforced composite laminate in active damping for smart structures

  • Chahar, Ravindra Singh;Ravi Kumar, B.
    • Steel and Composite Structures
    • /
    • 제31권4호
    • /
    • pp.387-396
    • /
    • 2019
  • This paper deals with the effect of ply orientation and control gain on tip transverse displacement of functionally graded beam layer for both active constrained layer damping (ACLD) and passive constrained layer damping (PCLD) system. The functionally graded beam is taken as host beam with a bonded viscoelastic layer in ACLD beam system. Piezoelectric fiber reinforced composite (PFRC) laminate is a constraining layer which acts as actuator through the velocity feedback control system. A finite element model has been developed to study actuation of the smart beam system. Fractional order derivative constitutive model is used for the viscoelastic constitutive equation. The control voltage required for ACLD treatment for various symmetric ply stacking sequences is highest in case of longitudinal orientation of fibers of PFRC laminate over other ply stacking sequences. Performance of symmetric and anti-symmetric ply laminates on damping characteristics has been investigated for smart beam system using time and frequency response plots. Symmetric and anti-symmetric ply laminates significantly reduce the amplitude of the vibration over the longitudinal orientation of fibers of PFRC laminate. The analysis reveals that the PFRC laminate can be used effectively for developing very light weight smart structures.

MR 유체를 이용한 운전석 댐퍼의 성능특성 (Performance Characteristics of Seat Damper Using MR Fluid)

  • 남무호
    • 한국생산제조학회지
    • /
    • 제9권5호
    • /
    • pp.127-134
    • /
    • 2000
  • This paper presents the development of a semi-active seat damper using MR fluids and the performance analysis of seat suspension system with a MR seat damper. An annular orifice type MR seat damper is proposed for a seat suspension of a commercial vehicle. After formulating the governing equation of motion, then an appropriate size of the seat damper is designed and manufactured. Following the evaluation of field-dependant damping force characteristics, the controllability of the damping force is experimentally demonstrated in time domain by adopting PID controller. A semi-active seat suspension with the proposed MR damper is constructed and its dynamic model is established. Subsequently, vibration control capability of the semi-active suspension system is investigated by employing the sky-hook controller.

  • PDF

반능동형 현가시스템을 위한 연속가변댐퍼의 특성 해석 (Analysis of Continuously Variable Damper Characteristics for Semi-Active Suspension Systems)

  • 허승진;박기홍
    • 한국정밀공학회지
    • /
    • 제20권7호
    • /
    • pp.128-137
    • /
    • 2003
  • Continuously variable damper can yield diverse damping forces for a single damping velocity. It is widely used in the semi-active suspension system since, with right control logics, it can enhance ride comfort compared to the passive damper while not degrading driving safety. A key to the successful design of the continuously variable damper is the knowledge of its complex and nonlinear characteristics. In this paper, research has been done for analyzing characteristics of the continuously variable damper. Various damper components have been investigated and their effects upon the force-velocity characteristics of the damper have been examined. The effects of the damper characteristics change upon ride comfort and driving safety have also been investigated by numerical simulations.

ER 유체를 이용한 반능동식 가변댐퍼의 성능해석 (Performance Analysis of a Semi-Active Variable Damper Featuring Electro-Rheological Fluids)

  • 최승복;정재천;최용빈;허승진;서문석
    • 한국자동차공학회논문집
    • /
    • 제1권1호
    • /
    • pp.90-100
    • /
    • 1993
  • This paper presents some inherent characteristics of a semi-active variable damper featuring electro-rheological (ER) fluid. The damping force of the damper can be selectively adjusted or controlled by employing electric field to the ER fluid domain. This is possible owing to the pressure drop across the piston occured by field-dependent variable yield stress of the ER fluid. This is fundamentally different than the performance of a conventional adjustable viscous damper. To demonstrate the effectiveness and superiority over the conventional one, the proposed damper is incorporated with a suspension system. A quarter car model with the suspension system is formulated and represented by a state equation. By choosing numerical values based on realistic package size, power requirements and suitable ER properties, the performance characteristics of the suspension system are obtained and evaluated in both frequency and time domains. The effects of constant electric field and on-off controlled electric field which relates to the damping force are also examined.

  • PDF

다중 션트회로에 연결된 압전세라믹을 이용한 비선형 패널 플러터의 수동적 억제 (Passive Suppression of Nonlinear Panel Flutter Using Piezoceramics with Multi Resonant Circuits)

  • 문성환;김승조
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1204-1209
    • /
    • 2000
  • Many analytical and experimental studies on the active suppression of nonlinear panel flutter by using piezoceramic patch have been carried out. However, these active control methods have a few important problems; a large amount of power is required to operate actuators, and additional apparatuses such as sensor systems and controller are needed. In this study passive suppression schemes for nonlinear flutter of composite panel, which is believed to be more robust suppression system than active control in practical operation, are proposed by using piezoelectric inductor-resistor series shunt circuit. Toward the end, a finite element equation of motion for an electromechanically coupled system is proposed using the Hamilton's principle. To achieve the best damping effect, optimal shape and location of the piezoceramic(PZT) patches are determined by using genetic algorithms. The results clearly demonstrate that the passive damping scheme by using piezoelectric shunt circuit can effectively attenuate the flutter.

  • PDF