Browse > Article
http://dx.doi.org/10.12989/eas.2022.22.2.109

Nonlinear semi-active/passive retrofit design evaluation using incremental dynamic analysis  

Rodgers, Geoffrey W. (Department of Mechanical Engineering, University of Canterbury)
Chase, J. Geoffrey (Department of Mechanical Engineering, University of Canterbury)
Roland, Thomas (Department of Mechanical Engineering, University of Canterbury)
Macrae, Gregory A. (Department of Civil Engineering, University of Canterbury)
Zhou, Cong (Department of Mechanical Engineering, University of Canterbury)
Publication Information
Earthquakes and Structures / v.22, no.2, 2022 , pp. 109-120 More about this Journal
Abstract
Older or damaged structures can require significant retrofit to ensure they perform well in subsequent earthquakes. Supplemental damping devices are used to achieve this goal, but increase base shear forces, foundation demand, and cost. Displacement reduction without increasing base shear is possible using novel semi-active and recently-created passive devices, which offer energy dissipation in selected quadrants of the force-displacement response. Combining these devices with large, strictly passive energy dissipation devices can offer greater, yet customized response reductions. Supplemental damping to reduce response without increasing base shear enables a net-zero base shear approach. This study evaluates this concept using two incremental dynamic analyses (IDAs) to show displacement reductions up to 40% without increasing base shear, more than would be achieved for either device alone, significantly reducing the risk of response exceeding the unaltered structural case. IDA results lead to direct calculation of reductions in risk and annualized economic cost for adding these devices using this net-zero concept, thus quantifying the trade-off. The overall device assessment and risk analysis method presented provides a generalizable proof-of-concept approach, and provides a framework for assessing the impact and economic cost-benefit of using modern supplemental energy dissipation devices.
Keywords
earthquake; economic loss; passive devices; semi-active devices; structural dynamics; supplemental damping;
Citations & Related Records
Times Cited By KSCI : 9  (Citation Analysis)
연도 인용수 순위
1 Asgarian, B., Mirtaheri, M.Y.M., Samani, H.R. and Alanjari, P. (2010), "Incremental dynamic analysis of high-rise towers", Struct. Des. Tall Spec. Build., 19(8), 922-934. https://doi.org/10.1002/tal.518.   DOI
2 Azarbakht, A. and Dolsek, M. (2011), "Progressive incremental dynamic analysis for first-mode dominated structures", J. Struct. Eng., 137(3), 445-455. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000282.   DOI
3 Barroso, L.R., Chase, J.G. and Hunt, S. (2003), "Resettable smart dampers for multi-level seismic hazard mitigation of steel moment frames", J. Struct. Control, 10(1), 41-58. https://doi.org/10.1002/stc.16.   DOI
4 Bobrow, J.E., Jabbari, F. and Thai, K. (2000), "A new approach to shock isolation and vibration suppression using a resetable actuator", J. Dynam. Syst. Meas. Control., 122(3), 570-573. https://doi.org/10.1115/1.1286629.   DOI
5 Chase, J.G., Barroso, L.R. and Hunt, S. (2004a), "The impact of total acceleration control for semi-active earthquake hazard mitigation", Eng. Struct., 26(2), 201-209. https://doi.org/10.1016/j.engstruct.2003.09.008.   DOI
6 Chase, J.G. and Rodgers, G.W. (2019), Passive Damper, U.S.A patent application US20190153740A1.
7 Chopra, A.K. (1995), Dynamics of Structures: Theory and Applications to Earthquake Engineering, Prentice Hall, Upper Saddle River, NJ, U.S.A.
8 Bacht, T., Chase, J.G., Macrae, G., Rodgers, G.W., Rabczuk, T., Dhakal, R.P. and Desombre, J. (2011), "HF2V dissipator effects on the performance of a 3 story moment frame", J. Constr. Steel Res., 67(12), 1843-1849. https://doi.org/10.1016/j.jcsr.2011.05.007.   DOI
9 Bakhshinezhad, S. and Mohebbi, M. (2019), "Multiple failure criteria-based fragility curves for structures equipped with SATMDs", Earthq. Struct., 17(5), 463-475. https://doi.org/10.12989/eas.2019.17.5.463.   DOI
10 Biot, M.A. (1941), "A mechanical analyzer for the prediction of earthquake stresses", B. Seismol. Soc. Am., 31(2), 151-171. https://doi.org/10.1785/BSSA0310020151.   DOI
11 Bitaraf, M., Ozbulut, O.E., Hurlebaus, S. and Barroso, L. (2010), "Application of semi-active control strategies for seismic protection of buildings with MR dampers", Eng. Struct., 32(10), 3040-3047. https://doi.org/10.1016/j.engstruct.2010.05.023.   DOI
12 Borzouie, J., Macrae, G.A., Chase, J.G., Rodgers, G.W. and Clifton, G.C. (2015), "Experimental studies on cyclic performance of column base weak axis aligned asymmetric friction connection", J. Constr. Steel Res., 112, 252-262. https://doi.org/10.1016/j.jcsr.2015.05.007.   DOI
13 Golzar, F.G., Rodgers, G.W. and Chase, J.G. (2018b), "Nonlinear spectral analysis for structures with re-centring D3 viscous dissipaters", J. Earthq. Eng., 24(10), 1530-1546. https://doi.org/10.1080/13632469.2018.1466742.   DOI
14 Zizouni, K., Fali, L., Sadek, Y. and Bousserhane, I.K. (2019), "Neural network control for earthquake structural vibration reduction using MRD", Front. Struct. Civil Eng., 13, 1171-1182. https://doi.org/10.1007/s11709-019-0544-4.   DOI
15 Solberg, K., Mashiko, N., Mander, J.B. and Dhakal, R.P. (2009), "Performance of a damage-protected highway bridge pier subjected to bidirectional earthquake attack", J. Struct. Eng., 135(5), 469-478. https://doi.org/10.1061/(ASCE)0733-9445(2009)135:5(469).   DOI
16 Chase, J.G., Barroso, L.R. and Hunt, S. (2004b), "A semi-active acceleration-based control for seismically excited civil structures including control input impulses", Struct. Eng. Mech., 18(3), 287-301. https://doi.org/10.12989/sem.2004.18.3.287.   DOI
17 Chase, J.G., Mulligan, K.J., Gue, A., Alnot, T., Rodgers, G., Mander, J.B., Elliott, R., Deam, B., Cleeve, L. and Heaton, D. (2006), "Re-shaping hysteretic behaviour using semi-active resettable device dampers", Eng. Struct., 28(10), 1418-1429. https://doi.org/10.1016/j.engstruct.2006.01.011.   DOI
18 Chen, X., Li, J., Li, Y. and Gu, X. (2016), "Lyapunov-based semi-active control of adaptive base isolation system employing magnetorheological elastomer base isolators", Earthq. Struct., 11(6), 1077-1099. https://doi.org/10.12989/eas.2016.11.6.1077.   DOI
19 Hazaveh, N., Rodgers, G., Chase, J. and Pampanin, S. (2017a), "Reshaping structural hysteresis response with semi-active viscous damping", B. Earthq. Eng., 15(4), 1789-1806. https://doi.org/10.1007/s10518-016-0036-z.   DOI
20 Hazaveh, N.K., Rodgers, G.W., Chase, J.G. and Pampanin, S. (2017b), "Experimental test and validation of a direction-and displacement-dependent viscous damper", J. Eng. Mech., 143(11), 04017132. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001354.   DOI
21 Chen, X.Q., Chase, J.G., Mulligan, K.J., Rodgers, G.W. and Mander, J.B. (2008), "Novel controllable semiactive-devices for reshaping structural response", IEEE T. Mechatron., 13(6), 647-657. https://doi.org/10.1109/TMECH.2008.2003958.   DOI
22 Corman, S., Macrae, G.A., Rodgers, G.W. and Chase, J.G. (2012b), "Nonlinear design and sizing of semi-active resetable dampers for seismic performance", Eng. Struct., 39, 139-147. https://doi.org/10.1016/j.engstruct.2012.01.015.   DOI
23 Rodgers, G.W., Mander, J.B., Chase, J.G., Mulligan, K.J., Deam, B.L. and Carr, A. (2007b), "Re-shaping hysteretic behaviour - spectral analysis and design equations for semi-active structures", Earthq. Eng. Struct. Dynam., 36(1), 77-100. https://doi.org/10.1002/eqe.624.   DOI
24 Mander, T.J., Rodgers, G.W., Chase, J.G., Mander, J.B., Macrae, G.A. and Dhakal, R.P. (2009), "Damage avoidance design steel beam-column moment connection using high-force-to-volume dissipators", J. Struct. Eng., 135(11), 1390-1397. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000065.   DOI
25 Rodgers, G.W., Solberg, K.M., Mander, J.B., Chase, J.G., Bradley, B.A. and Dhakal, R.P. (2012b), "High-force-to-volume seismic dissipators embedded in a jointed precast concrete frame", J. Struct. Eng., 138(3), 375-386. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000329.   DOI
26 Hadidi, A., Azar, B.F. and Shirgir, S. (2019), "Reliability assessment of semi-active control of structures with MR damper", Earthq. Struct., 17(2), 131-141. https://doi.org/10.12989/eas.2019.17.2.131.   DOI
27 Corman, S., Chase, J.G., Macrae, G.A. and Rodgers, G.W. (2012a), "Development and spectral analysis of an advanced diamond shaped resetable device control law", Eng. Struct., 40, 1-8. https://doi.org/10.1016/j.engstruct.2012.02.013.   DOI
28 Erramouspe, J., Kiousis, P.D., Christenson, R. and Vincent, T. (2007), "A resetting stiffness dynamic controller and its bench-scale implementation", Eng. Struct., 29(10), 2602-2610. https://doi.org/10.1016/j.engstruct.2007.01.014.   DOI
29 Etedali, S., Tavakoli, S. and Sohrabi, M.R. (2016), "Design of a decoupled PID controller via MOCS for seismic control of smart structures", Earthq. Struct., 10(5), 1067-1087. https://doi.org/10.12989/eas.2016.10.5.1067.   DOI
30 Golzar, F.G., Rodgers, G.W. and Chase, J.G. (2017), "Nonlinear spectral design analysis of a structure for hybrid self-centring device enabled structures", Struct. Eng. Mech., 61(6), 701-709. https://doi.org/10.12989/sem.2017.61.6.701.   DOI
31 Caterino, N., Spizzuoco, M. and Occhiuzzi, A. (2015), "Shaking table testing of a steel frame structure equipped with semi-active MR dampers: comparison of control algorithms", Smart Struct. Syst., 15(4), 963-995. http://dx.doi.org/10.12989/sss.2015.15.4.963.   DOI
32 Vamvatsikos, D. and Cornell, C.A. (2002), "Incremental dynamic analysis", Earthq. Eng. Struct. Dynam., 31(3), 491-514. https://doi.org/10.1002/eqe.141.   DOI
33 Solberg, K.M., Dhakal, R.P., Mander, J.B. and Bradley, B.A. (2008), "Computational and rapid expected annual loss estimation methodologies for structures", Earthq. Eng. Struct. Dynam., 37(1), 81-101. https://doi.org/10.1002/eqe.746.   DOI
34 Standards New Zealand (2004), Structural Design Actions Part 5 Earthquake Actions - New Zealand, NZS1170.5:2004, New Zealand.
35 Sun, S.S., Deng, H.X., Du, H.P., Li, W.H., Yang, J., Liu, G.P., Alici, G. and Yan, T.H. (2015), "A compact variable stiffness and damping shock absorber for vehicle suspension", IEEE T. Mechatron., 20(5), 2621-2629. https://doi.org/10.1109/TMECH.2015.2406319.   DOI
36 Vishnupriya, V., Chase, J.G., Rodgers, G. and Zhou, C. (2020), "Finite element method for designing HF2V device force capacity", 2020 NZSEE Annual Tech. Conf., April, Wellington, New Zealand.
37 Yang, J.N., Bobrow, J., Jabbari, F., Leavitt, J., Cheng, C.P. and Lin, P.Y. (2007), "Full-scale experimental verification of resetable semi-active stiffness dampers", Earthq. Eng. Struct. Dynam., 36(9), 1255-1273. https://doi.org/10.1002/eqe.681.   DOI
38 Golzar, F.G., Rodgers, G.W. and Chase, J.G. (2018a), "Design and experimental validation of a re-centring viscous dissipater", Struct., 13, 193-200. https://doi.org/10.1016/j.istruc.2017.12.008.   DOI
39 Han, S.W. and Chopra, A.K. (2006), "Approximate incremental dynamic analysis using the modal pushover analysis procedure", Earthq. Eng. Struct. Dynam., 35(15), 1853-1873. https://doi.org/10.1002/eqe.605.   DOI
40 Hazaveh, N.K., Chase, J.G., Rodgers, G.W., Pampanin, S. and Kordani, R. (2020), "Seismic behavior of a self-centering system with 2-4 viscous damper", J. Earthq. Eng., 24(3), 470-484. https://doi.org/10.1080/13632469.2018.1453415.   DOI
41 Kakavand, M.R.A. and Allahvirdizadeh, R. (2019), "Enhanced empirical models for predicting the drift capacity of less ductile RC columns with flexural, shear, or axial failure modes", Front. Struct. Civil Eng., 13(5), 1251-1270. https://doi.org/10.1007/s11709-019-0554-2.   DOI
42 Hormozabad, S.J. and Ghorbani-Tanha, A.K. (2020), "Semi-active fuzzy control of lali cable-stayed bridge using MR dampers under seismic excitation", Front. Struct. Civil Eng., 14, 706-721. https://doi.org/10.1007/s11709-020-0612-9.   DOI
43 Lin, C.C., Lu, L.Y., Lin, G.L. and Yang, T.W. (2010), "Vibration control of seismic structures using semi-active friction multiple tuned mass dampers", Eng. Struct., 32(10), 3404-3417. https://doi.org/10.1016/j.engstruct.2010.07.014.   DOI
44 Hazaveh, N.K., Rodgers, G.W., Chase, J.G. and Pampanin, S. (2018b), "Passive direction displacement dependent damping (D3) device", B. New Zealand Soc. Earthq. Eng., 51(2), 105-112. https://doi.org/10.5459/bnzsee.51.2.105-112.   DOI
45 Mulligan, K.J., Chase, J.G., Mander, J.B., Rodgers, G.W. and Elliott, R.B. (2010), "Nonlinear models and validation for resetable device design and enhanced force capacity", Struct. Health Monit., 17(3), 301-316. https://doi.org/10.1002/stc.298.   DOI
46 Ozbulut, O.E. and Hurlebaus, S. (2011), "Re-centering variable friction device for vibration control of structures subjected to near-field earthquakes", Mech. Syst. Signal Process., 25(8), 2849-2862. https://doi.org/10.1016/j.ymssp.2011.04.017.   DOI
47 Labbe, P. (2019), "Should we go ahead with the response spectrum?", Pure Appl. Geophys., 177(5), 2411-2420. https://doi.org/10.1007/s00024-019-02346-6.   DOI
48 Fitzjohn, J., Zhou, C. and Chase, J.G. (2020), "A combined SHM/IDA method for assessing collapse capacity and risk in subsequent ground motions", J. Civil Struct. Health Monit., 10, 17-28. https://doi.org/10.1007/s13349-019-00366-3.   DOI
49 Dhakal, R.P., Mander, J.B. and Mashiko, N. (2006), "Identification of critical ground motions for seismic performance assessment of structures", Earthq. Eng. Struct. Dynam., 35(8), 989-1008. https://doi.org/10.1002/eqe.568.   DOI
50 Hazaveh, N.K., Rad, A.A., Rodgers, G.W., Chase, J.G., Pampanin, S. and Ma, Q.T. (2018a), "Shake table testing of a low damage steel building with 2-4 displacement dependent (D3) viscous damper", Key Eng. Mater., 763, 331-338. https://doi.org/10.4028/www.scientific.net/KEM.763.331.   DOI
51 Latham, A.D., Reay, A.M. and Pampanin, S. (2013), "Kilmore street medical centre: Application of a post-tensioned steel rocking system", Proc. Steel Innov. Conf., Christchurch, New Zealand.
52 Rodgers, G.W., Mander, J.B. and Chase, J.G. (2011), "Semi-explicit rate-dependent modeling of damage-avoidance steel connections using HF2V damping devices", Earthq. Eng. Struct. Dynam., 40(9), 977-992. https://doi.org/10.1002/eqe.1073   DOI
53 Mander, J.B., Dhakal, R.P., Mashiko, N. and Solberg, K.M. (2007), "Incremental dynamic analysis applied to seismic financial risk assessment of bridges", Eng. Struct., 29(10), 2662-2672. https://doi.org/10.1016/j.engstruct.2006.12.015.   DOI
54 Mulligan, K.J., Chase, J.G., Mander, J.B., Rodgers, G.W., Elliott, R.B., Franco-Anaya, R. and Carr, A.J. (2009), "Experimental validation of semi-active resetable actuators in a 1/5th scale test structure", Earthq. Eng. Struct. Dynam., 38(4), 517-536. https://doi.org/10.1002/eqe.868.   DOI
55 Ozbulut, O.E., Bitaraf, M. and Hurlebaus, S. (2011), "Adaptive control of base-isolated structures against near-field earthquakes using variable friction dampers", Eng. Struct., 33(12), 3143-3154. https://doi.org/10.1016/j.engstruct.2011.08.022.   DOI
56 Jabbari, F. and Bobrow, J.E. (2002), "Vibration suppression with a resetable device", J. Eng. Mech., 128(9), 916-924. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:9(916).   DOI
57 Pekcan, G., Mander, J.B. and Chen, S.S. (1999), "Fundamental considerations for the design of non-linear viscous dampers", Earthq. Eng. Struct. Dynam., 28(11), 1405-1425. https://doi.org/10.1002/(SICI)1096-9845(199911)28:11%3C1405::AID-EQE875%3E3.0.CO;2-A.   DOI
58 Rodgers, G., Chase, J., Mulligan, K., Mander, J. and Elliott, R. (2009), "Customising semi-active resetable device behaviour for abating seismic structural response", B. New Zealand Soc. Earthq. Eng., 42(3), 147-156. https://doi.org/10.5459/bnzsee.42.3.147-156.   DOI
59 Rodgers, G.W., Chase, J.G., Mander, J.B., Leach, N.C. and Denmead, C.S. (2007a), "Experimental development, tradeoff analysis and design implementation of high force-to-volume damping technology", B. New Zealand Soc. Earthq. Eng., 40(2), 35-48. https://doi.org/10.5459/bnzsee.40.2.35-48.   DOI
60 Rodgers, G., Solberg, K., Chase, J., Mander, J., Bradley, B., Dhakal, R. and Li, L. (2008a), "Performance of a damage-protected beam-column subassembly utilizing external HF2V energy dissipation devices", Earthq. Eng. Struct. Dynam., 37(13), 1549-1564. https://doi.org/10.1002/eqe.830.   DOI
61 Rodgers, G.W., Mander, J.B., Chase, J.G., Dhakal, R.P., Leach, N.C. and Denmead, C.S. (2008b), "Spectral analysis and design approach for high force-to-volume extrusion damper-based structural energy dissipation", Earthq. Eng. Struct. Dynam., 37(2), 207-223. https://doi.org/10.1002/eqe.752.   DOI
62 Vishnupriya, V., Rodgers, G., Mander, J. and Chase, J. (2018), "Precision design modelling of HF2V devices", Struct., 14, 243-250. https://doi.org/10.1016/j.istruc.2018.03.007.   DOI
63 Trifunac, M.D. (2012), "Earthquake response spectra for performance based design-A critical review", Soil Dynam. Earthq. Eng., 37, 73-83. https://doi.org/10.1016/j.soildyn.2012.01.019.   DOI
64 Yu, Y., Royel, S., Li, J., Li, Y. and Ha, Q. (2016), "Magnetorheological elastomer base isolator for earthquake response mitigation on building structures: modeling and second-order sliding mode control", Earthq. Struct., 11(6), 943-966. http://dx.doi.org/10.12989/eas.2016.11.6.943.   DOI
65 Rodgers, G., Denmead, C., Leach, N., Chase, J. and Mander, J. (2006), "Spectral evaluation of high force-volume lead dampers for structural response reduction", Proc. New Zealand Soc. Earthq. Eng., Annual Conference (NZSEE 2006), March, Napier, New Zealand.
66 Rodgers, G.W., Chase, J.G., Roland, T. and Macrae, G.A. (2012a), "Spectral analysis for a semi-active-passive net-zero base-shear design concept", Earthq. Eng. Struct. Dynam., 41(8), 1207-1216. https://doi.org/10.1002/eqe.1177.   DOI
67 Rodgers, G.W., Mander, J.B., Chase, J.G., Mulligan, K.J., Deam, B. and Carr, A.J. (2006b), "Re-shaping hysteretic behaviour using resetable devices to customise structural response and forces", 8th US Nation. Conf. Earthq. Eng., April, San Francisco, CA, U.S.A.
68 Shannon, T., Borzouie, J. and Pampanin, S. (2020), "The low-damage design of hybrid concrete rocking walls for Turanga Library, Christchurch, New Zealand", SESOC J., 33(1), 74-83. https://search.informit.org/doi/10.3316/informit.171907811454605.   DOI
69 Sommerville, P., Smith, N., Punyamurthula, S. and Sun, J. (1997), "Development of ground motion time histories for phase II of the FEMA/SAC steel project", SAC Background Document Report, SAC/BD-97/04.