• Title/Summary/Keyword: Active Cell

Search Result 2,441, Processing Time 0.029 seconds

Stability of Bulk Heterojunction Organic Solar Cells with Different Blend Ratios of P3HT:PCBM

  • Kwon, Moo-Hyun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.2
    • /
    • pp.98-101
    • /
    • 2012
  • I studied the stability of organic photovoltaic cells in terms of P3HT:PCBM-71 blend ratio as a function of storage time. I obtained the best cell performance by optimizing the blend ratio of electron donor and electron acceptor within the active layer. In this study, I found that the more the P3HT:PCBM ratio increases within the active layer, the more the cell efficiency decreases as the storage time increases. As a result, the best optimized blend ratio was the 1:0.6 ratio of P3HT:PCBM-71, and cell efficiency of the device with the 1:0.6 blend ratio was 4.49%. The device with the best cell efficiency showed good stability.

Characteristics of DMFC Using High Porous Active Carbon as an Uncatalysed Diffusion Layer in Anode Electrode

  • Jung, Doo-Hwan;Shin, Dong-Ryul
    • Carbon letters
    • /
    • v.1 no.1
    • /
    • pp.27-30
    • /
    • 2000
  • Performance of direct methanol fuel cell using high porous active carbon as an uncatalysed diffusion layer in anode (composite electrode) has been evaluated. Effects of porous active carbon in anode were investigated by galvanostatic method and Fourier Transform Infrared spectroscopy. The single cell was operated with 2.5 M methanol at temperature of $80-120^{\circ}C$ and showed performance of $210-510\;mA/cm^2$ at 0.4V. By replacing conventional electrode with composite electrode, the increment of $290\;mA/cm^2$ in current density was obtained at $90^{\circ}C$and 0.4V. The potential decay of the single cell was about 14.5% for 20 days operation.

  • PDF

Changes of Cytokine and Chemokine mRNA Expression in Whole Blood Cells from Active Pulmonary Tuberculosis Patients after T-Cell Mitogen and Mycobacterium tuberculosis Specific Antigen Stimulation

  • Kim, Sunghyun;Park, Sangjung;Lee, Hyeyoung
    • Biomedical Science Letters
    • /
    • v.20 no.3
    • /
    • pp.162-167
    • /
    • 2014
  • Tuberculosis (TB) is one of the major global health problems and it has been estimated that in 5~10% of Mycobacterium tuberculosis (MTB)-infected individuals, the infection progresses to an active disease. Numerous cytokines and chemokines regulate immunological responses at cellular level including stimulation and recruitment of wide range of cells in immunity and inflammation. In the present study, the mRNA expression levels of eight host immune markers containing of IFN-${\gamma}$, TNF-${\alpha}$, IL-2R, IL-4, IL-10, CXCL9, CXCL10, and CXCL11 in whole blood cells from active pulmonary TB patients were measured after T-cell mitogen (PHA) and MTB specific antigens (ESAT-6, CFP-10, and TB7.7). Among the TH1-type factors, IFN-${\gamma}$ mRNA expression was peaked at 4 h, TNF-${\alpha}$ and IL-2R mRNA expression was significantly high at the late time points (24 h) in active TB patients, TH2-type cytokine (IL4 and IL10) mRNA expression levels in both active TB and healthy controls samples did not changed significantly, and the mRNA expression of the three IFN-${\gamma}$-induced chemokines (CXCL9, CXCL10, and CXCL11) were peaked at the late time points (24 h) in active TB patients after MTB specific antigen stimulation. In conclusion, the mRNA expression patterns of the TB-related immune markers in response to the T-cell mitogen (PHA) differed from those in response to MTB specific antigens and these findings may helpful for understanding the relationship between MTB infection and host immune markers in a transcripts level.

Analysis of activation, ohmic, and concentration losses in hydrogen fuelled PEM fuel cell

  • Rohan Kumar;K.A Subramanian
    • Advances in Energy Research
    • /
    • v.8 no.4
    • /
    • pp.253-264
    • /
    • 2022
  • This paper deals with the effects of design (active area, current density, membrane conductivity) and operating parameters (temperature, relative humidity) on the performance of hydrogen-fuelled proton exchange membrane (PEM) fuel cell. The design parameter of a PEM fuel cell with the active area of the single cell considered in this study is 25 cm2 (5 × 5). The operating voltage and current density of the fuel cell were 0.7 V and 0.5 A/cm2 respectively. The variations of activation voltage, ohmic voltage, and concentration voltage with respect to current density are analyzed in detail. The membrane conductivity with variable relative humidity is also analyzed. The results show that the maximum activation overpotential of the fuel cell was 0.4358 V at 0.21 A/cm2 due to slow reaction kinetics. The calculated ohmic and concentrated overpotential in the fuel cell was 0.01395 V at 0.76 A/cm2 and 0.027 V at 1.46 A/cm2 respectively.

Alcohol Impairs learning of T-maze Task but Not Active Avoidance Task in Zebrafish

  • Yang, Sunggu;Kim, Wansik;Choi, Byung-Hee;Koh, Hae-Young;Lee, Chang-Joong
    • Animal cells and systems
    • /
    • v.7 no.4
    • /
    • pp.303-307
    • /
    • 2003
  • The aim of this study is to investigate whether alcohol alters learning and memory processes pertaining to emotional and spatial factors using the active avoidance and T-maze task in zebrafish. In the active avoidance task, zebrafish were trained to escape from one compartment to another to avoid electric shocks (unconditioned stimulus) following a conditioned light signal. Acquisition of active avoidance task appeared to be normal in zebrafish that were treated with 1% alcohol for 30 min for 17 days until the end of the behavioral test, and retention ability of learned behavior, tested 2 days later, was the same as control group. In the T-maze task, the time to find a reservoir was compared. While the latency was similar during the 1 st training session between control and alcohol-treated zebrafish, it was significantly longer in alcohol-treated zebrafish during retention test 24 h later. Furthermore, when alcohol was treated 30 min after 2nd session without prior treatment, zebrafish demonstrated similar retention ability compared to control. These results suggest that chronic alcohol treatment alters spatial learning of zebrafish, but not emotional learning.

Ectopic Expression of Mitochondria Endonuclease Pnu1p from Schizosaccharomyces pombe Induces Cell Death of the Yeast

  • Oda, Kaoru;Kawasaki, Nami;Fukuyama, Masashi;Ikeda, Shogo
    • BMB Reports
    • /
    • v.40 no.6
    • /
    • pp.1095-1099
    • /
    • 2007
  • Endonuclease G (EndoG) is a mitochondrial non-specific nuclease that is highly conserved among the eukaryotes. Although the precise role of EndoG in mitochondria is not yet known, the enzyme is released from the mitochondria and digests nuclear DNA during apoptosis in mammalian cells. Schizosaccharomyces pombe has an EndoG homolog Pnu1p (previously named SpNuc1) that is produced as a precursor protein with a mitochondrial targeting sequence. During the sorting into mitochondria the signal sequence is cleaved to yield the functionally active endonuclease. From the analogy to EndoG, active extramitochondrial Pnu1p may trigger cell killing by degrading nuclear DNA. Here, we tested this possibility by expressing a truncated Pnu1p lacking the signal sequence in the extramitochondrial region of pnu1-deleted cells. The truncated Pnu1p was localized in the cytosol and nuclei of yeast cells. And ectopic expression of active Pnu1p led to cell death with fragmentation of nuclear DNA. This suggests that the Pnu1p is possibly involved in a certain type of yeast cell death via DNA fragmentation. Although expression of human Bak in S. pombe was lethal, Pnu1p nuclease is not necessary for hBak-induced cell death.

Study on the Charging Characteristics of a Sealed Type Ni-Cd Cell (밀폐식 Ni-Cd 전지의 충전특성에 관한 연구)

  • Yung Woo Park;Chai Won Kim;Mu Shik Jhon
    • Journal of the Korean Chemical Society
    • /
    • v.15 no.6
    • /
    • pp.347-352
    • /
    • 1971
  • The variations of the positive and negative electrode potentials, and of internal pressure were measured during the charge of the sealed type Ni-Cd cell. Both polarization characteristics of a paste type Cd-electrode as a gas diffusion electrode in 30% KOH solution and the effects of active carbon electrode as an oxygen consuming auxiliary electrode of the Ni-Cd cell on the charging characteristics of the cell were studied. Peak voltage at the end of charge of the cell is ascribed to the peak at the negative electrode potential, which is due to the concentration polarization by the lack of $Cd^{++}$ ion and oxygen concentration. And the recovery of the negative electrode potential is resulted from depolarization by the increasing diffusion limiting current density with the increasing oxygen pressure. The active carbon electrode was effective as an oxygen consuming auxiliary electrode. The internal pressure of the cell could be maintained below 200mmHg even at one hour rate charge and overcharge by the use of active carbon electrode as an auxiliary electrode.

  • PDF

Evaluation of the Performance of an Organic Thin Film Solar Cell Prepared Using the Active Layer of Poly[[9-(1-octylnonyl)-9H-carbazole-2.7-diyl]-2.5-thiophenediyl-2.1.3-benzothiadiazole-4.7-Diyl-2.5-thiophenediyl]/[6,6]-Phenyl C71 Butyric Acid Methyl Ester Composite Thin Film

  • Ochiai, Shizuyasu;Uchiyama, Masaki;Kannappan, Santhakumar;Jayaraman, Ramajothi;Shin, Paik-Kyun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.1
    • /
    • pp.43-46
    • /
    • 2012
  • Organic solar cell devices were fabricated using poly[9-(1-octylnonyl)-9H-carbazole-2.7-diyl]-2.5-thiophenediyl-2.1.3-benzothiadiazole-4.7-diyl-2.5-thiophenediyl] PCDTBT/ [6,6]-phenyl $C_{71}$ butyric acid methyl ester (PC71BM) active layer deposited by spin coating. Moreover, the relationship between solar cell performance and buffer layer thickness was investigated by spin coating speed and AFM imaging of the buffer layer surface. The performance of the organic solar cell with spin-coated active layer was then evaluated, and the power conversion efficiency of the solar cell was determined to be > 5%.

Fuel Cell Generation Systems with Active Clamp Current fed Half Bridge Converter (능동 클램프 전류형 하프 브리지 컨버터를 적용한 연료전지 발전시스템)

  • Jang S. J.;Kim J. T.;Lee T. W.;Lee B. K.;Won C. Y.
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.78-86
    • /
    • 2005
  • Recently, a fuel cell with low voltage and high current output characteristics is remarkable for new generation system. It needs both a dc-dc boost converter and dc-ac inverter to be used in fuel cell generation system. Therefore, this paper presents dc-dc active clamp current-fed half-bridge converter with ZVS for fuel cell generation system. The proposed converter has outstanding advantages over the conventional dc-dc converters with respect to high efficiency and high component utilization. The Fuel Cell generation system consist of active clamp current-fed half-bridge converter to boost the Fuel Cell(PEMFC) voltage(28∼43[Vdc]) to 380[Vdc]. A single phase full-bridge inverter is implemented to produce 220[Vac], 60[Hz] AC outputs.

Cell-cell contacts via N-cadherin induce a regulatory renin secretory phenotype in As4.1 cells

  • Chang, Jai Won;Kim, Soohyun;Lee, Eun Young;Leem, Chae Hun;Kim, Suhn Hee;Park, Chun Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.6
    • /
    • pp.479-499
    • /
    • 2022
  • The lack of a clonal renin-secreting cell line has greatly hindered the investigation of the regulatory mechanisms of renin secretion at the cellular, biochemical, and molecular levels. In the present study, we investigated whether it was possible to induce phenotypic switching of the renin-expressing clonal cell line As4.1 from constitutive inactive renin secretion to regulated active renin secretion. When grown to postconfluence for at least two days in media containing fetal bovine serum or insulin-like growth factor-1, the formation of cell-cell contacts via N-cadherin triggered downstream cellular signaling cascades and activated smooth muscle-specific genes, culminating in phenotypic switching to a regulated active renin secretion phenotype, including responding to the key stimuli of active renin secretion. With the use of phenotype-switched As4.1 cells, we provide the first evidence that active renin secretion via exocytosis is regulated by phosphorylation/dephosphorylation of the 20 kDa myosin light chain. The molecular mechanism of phenotypic switching in As4.1 cells described here could serve as a working model for full phenotypic modulation of other secretory cell lines with incomplete phenotypes.