• Title/Summary/Keyword: Activation factor

Search Result 2,338, Processing Time 0.026 seconds

NSA9, a human prothrombin kringle-2-derived peptide, acts as an inhibitor of kringle-2-induced activation in EOC2 microglia

  • Kim, Ji-Yeon;Kim, Tae-Hyong;Kim, Soung-Soo
    • BMB Reports
    • /
    • v.42 no.6
    • /
    • pp.380-386
    • /
    • 2009
  • In neurodegenerative diseases, such as Alzheimer' and Parkinson', microglial cell activation is thought to contribute to CNS injury by producing neurotoxic compounds. Prothrombin and kringle-2 increase levels of NO and the mRNA expression of iNOS, IL-1$\beta$, and TNF-$\alpha$ in microglial cells. In contrast, the human prothrombin kringle-2 derived peptide NSA9 inhibits NO release and the production of pro-inflammatory cytokines such as IL-1$\beta$, TNF-$\alpha$, and IL-6 in LPS-activated EOC2 microglia. In this study, we investigated the anti-inflammatory effects of NSA9 in human prothrombin- and kringle-2-stimulated EOC2 microglia. Treatment with 20-100 ${\mu}M$ of NSA9 attenuated both prothrombin- and kringle-2-induced microglial activation. NO production induced by MAPKs and NF-$\kappa$B was similarly reduced by inhibitors of ERK (PD98059), p38 (SB203580), NF-$\kappa$B (N-acetylcysteine), and NSA9. These results suggest that NSA9 acts independently as an inhibitor of microglial activation and that its effects in EOC2 microglia are not influenced by the presence of kringle-2.

Selective regulation of osteoclast adhesion and spreading by PLCγ/PKCα-PKCδ/RhoA-Rac1 signaling

  • Kim, Jin-Man;Lee, Kyunghee;Jeong, Daewon
    • BMB Reports
    • /
    • v.51 no.5
    • /
    • pp.230-235
    • /
    • 2018
  • Bone resorption by multinucleated osteoclasts is a multistep process involving adhesion to the bone matrix, migration to resorption sites, and formation of sealing zones and ruffled borders. Macrophage colony-stimulating factor (M-CSF) and osteopontin (OPN) have been shown to be involved in the bone resorption process by respective activation of integrin ${\alpha}v{\beta}3$ via "inside-out" and "outside-in" signaling. In this study, we investigated the link between signal modulators known to M-CSF- and OPN-induced osteoclast adhesion and spreading. M-CSF- and OPN-induced osteoclast adhesion was achieved via activation of stepwise signals, including integrin ${\alpha}v{\beta}3$, $PLC{\gamma}$, $PKC{\delta}$, and Rac1. Osteoclast spreading induced by M-CSF and OPN was shown to be controlled via sequential activation, consistent with the osteoclast adhesion processes. In contrast to osteoclast adhesion, osteoclast spreading induced by M-CSF and OPN was blocked via activation of $PLC{\gamma}/PKC{\alpha}/RhoA$ signaling. The combined results indicate that osteoclast adhesion and spreading are selectively regulated via $PLC{\gamma}/PKC{\alpha}-PKC{\delta}/RhoA-Rac1$ signaling.

Distinct Differences between TNF Receptor 1- and TNF Receptor 2- mediated Activation of NFκB

  • Thommesen, Liv;Laegreid, Astrid
    • BMB Reports
    • /
    • v.38 no.3
    • /
    • pp.281-289
    • /
    • 2005
  • Tumor necrosis factor (TNF) signaling is mediated via two distinct receptors, TNFR2 and TNFR1, which shows partially overlapping signaling mechanisms and biological roles. In the present study, TNFR2 and TNFR1 signal transduction mechanisms involved in activation of $NF{\kappa}B$ and CMV promoter-enhancer were compared with respect to their susceptibility towards inhibitors of intracellular signaling. For this, we used SW480 cells, where we have shown that TNF-signaling can occur independently through each of the two receptors. The TNFR1 response was inhibited by D609, bromophenacyl bromide (BPB), nordihydroguararetic acid (NDGA), and by sodium salicylate, while TNFR2-mediated activation of $NF{\kappa}B$ and CMV promoter-enhancer was resistant to these compounds. The signaling mechanisms known to be affected by these inhibitors include phospholipases as well as redox- and pH-sensitive intracellular components. Our results imply that TNFR2 signaling involved in $NF{\kappa}B$ activation proceeds independently of these inhibitor-sensitive signaling components, indicating distinct signaling pathways not shared with TNFR1.

Effect of Arginine Modification of Cytosolic Component $p47^{phox}$ by Phenylglyoxal on the Activation of Respiratory Burst Oxidase in Human Neutrophils

  • Park, Jeen-Woo
    • BMB Reports
    • /
    • v.29 no.6
    • /
    • pp.507-512
    • /
    • 1996
  • The NADPH oxidase of phagocytes catalyzes the reduction of oxygen to $O_{2}^{-}$ at the expense of NADPH The enzyme is dormant in resting neutrophils and hecomes activated on stimulation. During activation. $p47^{phox}$ (phagocyte oxidase factor), a cytosolic oxidase subunit, becomes extensively phosphorylated on a number of serines located between S303-S379. Although the biochemical role of phosphorylation is speculative, it has been suggested that phosphorylation could neutralize the strongly cationic C-terminal which may result in the change of conformation of $p47^{phox}$ and subsequent translocation of this protein and other cytosolic components to the membrane. In order to mimic the effect of phosphorylation in terms of neutralizing the positive charges, recombinant $p47^{phox}$ was treated with phenylglyoxal, which removes positive charges of arginine residues. Modification of recombinant $p47^{phox}$ resulted in the activation of oxidase in a cell-free translocation system as well as a conformational change in recombinant $p47^{phox}$ which may be responsible for the activation of the enzyme.

  • PDF

Anti-inflammatory Effects of Metformin on Neuro-inflammation and NLRP3 Inflammasome Activation in BV-2 Microglial Cells

  • Ha, Ji-Sun;Yeom, Yun-Seon;Jang, Ju-Hun;Kim, Yong-Hee;Im, Ji In;Kim, In Sik;Yang, Seung-Ju
    • Biomedical Science Letters
    • /
    • v.25 no.1
    • /
    • pp.92-98
    • /
    • 2019
  • Metformin is a drug used for the treatment of diabetes and is associated with anti-inflammatory reaction, but the underlying mechanism is unclear. In this study, we investigated the effect of metformin on the inflammatory response in BV-2 microglial cells induced by lipopolysaccharide (LPS) and S100 calcium-binding protein A8 (S100A8). The results revealed that metformin significantly attenuated several inflammatory responses in BV-2 microglial cells, including the secretion of pro-inflammatory cytokines, such as tumor necrosis factor-${\alpha}$ and interleukin (IL)-6, involved in the activation of Beclin-1, a crucial regulator of autophagy. In addition, metformin inhibited the LPS-induced phosphorylation of ERK. Metformin also suppressed the activation of NOD-like receptor pyrin domain containing 3 inflammasomes composed of NLRP3, caspase-1, and apoptosis-associated speck like protein containing a caspase recruitment domain, which are involved in the innate immune response. Notably, metformin decreased the secretion of S100A8-induced IL-6 production. These findings suggest that metformin alleviates the neuroinflammatory response via autophagy activation.

Estrogen Induces CK2α Activation via Generation of Reactive Oxygen Species

  • Jeong, Soo-Yeon;Im, Suhn-Young
    • Biomedical Science Letters
    • /
    • v.25 no.1
    • /
    • pp.23-31
    • /
    • 2019
  • The protein kinase $CK2{\alpha}$ (formerly Casein Kinase II) is implicated in tumorigenesis and transformation. However, the mechanisms of $CK2{\alpha}$ activation in breast cancer have yet to be elucidated. This study investigated the mechanisms of $CK2{\alpha}$ activation in estrogen signaling. Estrogen increased reactive oxygen species (ROS) production, $CK2{\alpha}$ activity, and protein expression in estrogen receptor positive ($ER^+$) MCF-7 human breast cancer cells, which were inhibited by the antioxidant N-acetyl-L-cysteine. $H_2O_2$ enhanced $CK2{\alpha}$ activity and protein expression. Human epidermal growth factor (EGF) increased ROS production, $CK2{\alpha}$ activity and protein expression in EGF receptor 2 (HER2)-overexpressing MCF-7 (MCF-7 HER2) cells, but not in MCF-7 cells. Estrogen induced the phosphorylation of p38 mitogen-activated protein kinase (MAPK). The p38 inhibitor, SB202190, blocked estrogen-induced increases in ROS production, $CK2{\alpha}$ activity and $CK2{\alpha}$ protein expression. The data suggest that ROS/p38 MAPK is the key inducer of $CK2{\alpha}$ activation in response to estrogen or EGF.

A Study on the Calculation of Escape Frequency Factor using TSC Equation (열자격전류식을 이용한 이탈주파수인자 계산에 관한 연구)

  • 김기준;김상진;전동근
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.135-138
    • /
    • 1995
  • This paper presents a method to calculate the escape frequency factor and its verification from TSC(Thermally Stimulated Current) equation and cures. To apply calculation method of ν using asymptotic estimation, it utilized two sets of TSC data with 1K interval. This method enables one to get the exact value of ν and activation energy at the same time by using computer programming. So, it regards their calculation method as a useful process to obtain the value of physical behavior.

  • PDF

Effects of Sperm Membrane Disruption and Electrical Activation of Oocytes on In vitro Development and Transgenesis of Porcine Embryos Produced by Intracytoplasmic Sperm Injection

  • Shim, Sang Woo;Kim, Young Ha;Lee, Hoon Taek;Shim, Hosup
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.3
    • /
    • pp.358-363
    • /
    • 2008
  • The intracytoplasmic sperm injection (ICSI) procedure has recently been utilized to produce transgenic animals and may serve as an alternative to the conventional pronuclear microinjection in species such as pigs whose ooplasm is opaque and pronuclei are often invisible. In this study, the effects of sperm membrane disruption and electrical activation of oocytes on in vitro development and expression of transgene green fluorescent protein (GFP) in ICSI embryos were tested to refine this recently developed procedure. Prior to ICSI, sperm heads were treated with Triton X-100+NaCl or Triton X-100+NaCl+NaOH, to disrupt membrane to be permeable to exogenous DNA, and incubated with linearized pEGFP-N1 vector. To induce activation of oocytes, a single DC pulse of 1.3 kV/cm was applied to oocytes for $30{\mu}sec$. After ICSI was performed with the aid of a micromanipulator, in vitro development of embryos and GFP expression were monitored. The chemical treatment to disrupt sperm membrane did not affect the developmental competence of embryos. 40 to 60% of oocytes were cleaved after injection of sperm heads with disrupted membrane, whereas 48.6% (34/70) were cleaved without chemical treatment. Regardless of electrical stimulation to induce activation, oocytes were cleaved after ICSI, reflecting that, despite sperm membrane disruption, the perinuclear soluble sperm factor known to mediate oocyte activation remained intact. After development to the 4-cell stage, 11.8 (2/17, Triton X-100+NaCl+NaOH) to 58.8% (10/17, Triton X-100+NaCl) of embryos expressed GFP. The expression of GFP beyond the stage of embryonic genome activation (4-cell stage in the pig) indicates that the exogenous DNA might have been integrated into the porcine genome. When sperm heads were co-incubated with exogenous DNA following the treatment of Triton X-100+NaCl, GFP expression was observed in high percentage (58.8%) of embryos, suggesting that transgenic pigs may efficiently be produced using ICSI.

Effect of the Hesperetin and Naringenin on $pp60^{v-src}$-induced $NF-{\kappa}B$ Activation ($pp60^{v-src}$에 의한 $NF-{\kappa}B$ 활성화에 대한 헤스페레틴과 나린제닌의 저해 효과)

  • Kwon, O-Song;Kim, Bo-Yeon;Kim, Kyoung-A;Kim, Min-Soo;Oh, Hyun-Cheol;Kim, Beom-Seok;Kim, Young-Ho;Ahn, Jong-Seog
    • Korean Journal of Pharmacognosy
    • /
    • v.35 no.3 s.138
    • /
    • pp.244-249
    • /
    • 2004
  • The effects of hesperetin and naringenin on $NF-{\kappa}B$ activation were investigated in normal rat kidney cells transformed by temperature sensitive Rous Sarcoma Virus (tsNRK). The flavonoids, naringenin and hesperetin, significantly reduced v-Src-induced $NF-{\kappa}B$ activation as well as phosphorylation of Akt and GSK-3 in tsNRK cells, whereas these compounds did not effect on platelet-derived growth factor (PDGF)-induced $NF-{\kappa}B$ activation in $NIH3T3{\gamma}l$ cells. In addition, the DNA binding activity of SP-I was also reduced but that of AP-1 was not affected by the compounds. Our study suggests that Src-induced $NF-{\kappa}B$ activation could occur via Akt-GSK-3 pathway without $IkB{\alpha}$ degradation and that naringenin and hesperetin could be used in the treatment of cancer through the inhibition of $NF-{\kappa}B$ activation.

Effect of Proprioceptive Neuromuscular Facilitation Applied to the Unilateral Upper Extremity on the Muscle Activation of Contralateral Lower Extremity (펀측 상지에 적용된 고유수용성 신경근 촉진법이 반대측 하지의 근 활성도에 미치는 영향)

  • Kim, Kyung-Hwan;Park, Ji-Won;Bae, Sung-Soo
    • PNF and Movement
    • /
    • v.4 no.1
    • /
    • pp.9-18
    • /
    • 2006
  • Purpose: The purpose of this study was to investigate the effect of Proprioceptive Neuromuscular Facilitation (PNF) applied to the unilateral upper extremity on the muscle activation of contralateral lower extremity. Twenty-two healthy subjects (mean age of 23.7 years) participated in this study. Method : PNF patterns applied on the unilateral upper extremity in all subjects were the flexion/abduction/external rotation and lifting pattern. The hold and appoximation techniques for the irradiation were applied to end range of both patterns. Muscle activations in four patterns were measured in vastus medialis, tibialis anterior, rectus femoris, and gastrocnemius medial muscles of contralateral lower extremity using surface EMG system. Each EMG value in individual muscle was normalized for maximal voluntary contraction. The data were analyzed by one factor analysis of variance with repeated measure test. Result : There were significant differences in the between-subject effect (muscles) and within-subject effect (patterns) in comparison of muscle activation by application of PNF patterns (p<.05). The irradiation led to higher activation in the flexion/abduction/external rotation pattern than that of lifting pattern in all muscles (p<.05). The approximation techniques revealed more activations than these of hold technique in all muscles (p<.05). Conclusion : These results suggest that the application of PNF patterns to the unilateral upper extremity affect on the muscle activation of contralateral lower extremity and increase according to the intensity of resistance. This mechanism of contralateral effect might provide a help to the development of treatment method for the affected side and functional improvement for the patients who have damages of central nervous system or musculoskeletal problems by orthopedic injury.

  • PDF