Browse > Article
http://dx.doi.org/10.15616/BSL.2019.25.1.23

Estrogen Induces CK2α Activation via Generation of Reactive Oxygen Species  

Jeong, Soo-Yeon (Department of Biological Sciences, College of Natural Sciences, Chonnam National University)
Im, Suhn-Young (Department of Biological Sciences, College of Natural Sciences, Chonnam National University)
Abstract
The protein kinase $CK2{\alpha}$ (formerly Casein Kinase II) is implicated in tumorigenesis and transformation. However, the mechanisms of $CK2{\alpha}$ activation in breast cancer have yet to be elucidated. This study investigated the mechanisms of $CK2{\alpha}$ activation in estrogen signaling. Estrogen increased reactive oxygen species (ROS) production, $CK2{\alpha}$ activity, and protein expression in estrogen receptor positive ($ER^+$) MCF-7 human breast cancer cells, which were inhibited by the antioxidant N-acetyl-L-cysteine. $H_2O_2$ enhanced $CK2{\alpha}$ activity and protein expression. Human epidermal growth factor (EGF) increased ROS production, $CK2{\alpha}$ activity and protein expression in EGF receptor 2 (HER2)-overexpressing MCF-7 (MCF-7 HER2) cells, but not in MCF-7 cells. Estrogen induced the phosphorylation of p38 mitogen-activated protein kinase (MAPK). The p38 inhibitor, SB202190, blocked estrogen-induced increases in ROS production, $CK2{\alpha}$ activity and $CK2{\alpha}$ protein expression. The data suggest that ROS/p38 MAPK is the key inducer of $CK2{\alpha}$ activation in response to estrogen or EGF.
Keywords
Estrogen; $CK2{\alpha}$; ROS; P38 MAPK;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Li Z, Zhang G, Feil R, Han J, Du X. Sequential activation of p38 and ERK pathways by cGMP-dependent protein kinase leading to activation of the platelet integrin ${\alpha}IIb{\beta}3$. Blood. 2006. 107: 965-972.   DOI
2 Litchfield DW. Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochemical Journal. 2003. 369: 1-15.   DOI
3 Mahadev K, Zilbering A, Zhu L, Goldstein BJ. Insulin-stimulated hydrogen peroxide reversibly inhibits protein-tyrosine phosphatase 1b in vivo and enhances the early insulin action cascade. Journal of Biological Chemistry. 2001. 276: 21938-21942.   DOI
4 Me'nard S, Pupa SM, Campiglio M, Tagliabue E. Biologic and therapeutic role of HER2 in cancer. Oncogene. 2003. 22: 6570-6578.   DOI
5 Mendelsohn J, Baselga J. Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer. Journal of Clinical Oncology. 2003. 21: 2787-2799.   DOI
6 Ohba M, Shibanuma M, Kuroki T, Nose K. Production of hydrogen peroxide by transforming growth factor-beta 1 and its involvement in induction of egr-1 in mouse osteoblastic cells. Journal of Cell Biology. 1994. 126: 1079-1088.   DOI
7 Okoh V, Deoraj A, Roy D. Estrogen-induced reactive oxygen species-mediated signalings contribute to breast cancer. Biochim Biophys Acta. 2011. 1815: 115-133.
8 Parkash J, Felty Q, Roy D. Estrogen exerts a spatial and temporal influence on reactive oxygen species generation that precedes calcium uptake in high-capacity mitochondria: implications for rapid nongenomic signaling of cell growth. Biochemistry. 2006. 45: 2872-2881.   DOI
9 Rakha EA, El-Sayed ME, Green AR, Lee AH, Robertson JF, Ellis IO. Prognostic markers in triple-negative breast cancer. Cancer. 2007. 109: 25-32.   DOI
10 Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jefrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D. Molecular portraits of human breast tumours. Nature. 2000. 406: 747-752.   DOI
11 Roy D, Cai Q, Felty Q, Narayan S. Estrogen-induced generation of reactive oxygen and nitrogen species, gene damage, and estrogen-dependent cancers. Journal of Toxicology and Environmental Health Part B Critical Reviews. 2007. 10: 235-257.   DOI
12 Saitoh M, Nishitoh H, Fujii M, Takeda K, Tobiume K, Sawada Y, Kawabata M, Miyazono K, Ichijo H. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO Journal. 1998. 17: 2596-2606.   DOI
13 Carew JS, Huang P. Mitochondrial defects in cancer. Molecular Cancer. 2002. 1: 15.
14 Allende JE, Allende CC. Protein kinases. 4. Protein kinase CK2: an enzyme with multiple substrates and a puzzling regulation. FASEB Journal. 1995. 9: 313-323.   DOI
15 Bae YS, Kang SW, Seo MS, Baines IC, Tekle E, Chock PB, Rhee SG. Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. Journal of Biological Chemistry. 1997. 272: 217-221.   DOI
16 Sauer H, Wartenberg M, Hescheler J. Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cellular Physiology and Biochemistry. 2001. 11: 173-186.   DOI
17 Seo HS, Choi HS, Kim SR, Choi YK, Woo SM, Shin I, Woo JK, Park SY, Shin YC, Ko SG. Apigenin induces apoptosis via extrinsic pathway, inducing p53 and inhibiting STAT3 and $NF{\kappa}B$ signaling in HER2-overexpressing breast cancer cells. Molecular Cellular Biochemistry. 2012. 366: 319-334.   DOI
18 Singh NN, Ramji DP. Protein kinase CK2, an important regulator of the inflammatory response? Journal of Molecular Medicine (Berl). 2008. 86: 887-897.   DOI
19 Brennan JP, Bardswell SC, Burgoyne JR, Fuller W, Schroder E, Wait R, Begum S, Kentish JC, Eaton P. Oxidant-induced activation of type I protein kinase A is mediated by RI subunit interprotein disulfide bond formation. Journal of Biological Chemistry. 2006. 281: 21827-21836.   DOI
20 Burness ML, Grushko TA, Olopade OI. Epidermal growth factor receptor in triplenegative and basal-like breast cancer: promising clinical target or only a marker? Cancer Journal. 2010. 16: 23-32.   DOI
21 Chua MM, Ortega CE, Sheikh A, Lee M, Abdul-Rassoul H, Hartshorn KL, Dominguez I. CK2 in Cancer: Cellular and biochemical mechanisms and potential therapeutic target. Pharmaceuticals (Basel). 2017. 10: 30.   DOI
22 Clemons M, Goss P. Estrogen and the risk of breast cancer. New England Journal of Medicine. 2001. 344: 276-285.   DOI
23 Thannickal VJ, Fanburg BL. Activation of an $H_2O_2$-generating NADH oxidase in human lung fibroblasts by transforming growth factor beta 1. Journal of Biological Chemistry. 1995. 270: 30334-30338.   DOI
24 Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987. 235: 177-182.   DOI
25 Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, Deng S, Johnsen H, Pesich R, Geisler S, Demeter J, Perou CM, Lnning PE, Brown PO, Brresen-Dale AL, Botstein D. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proceedings of the National Academy of Sciences of the USA. 2003. 100: 8418-8423.   DOI
26 Sundaresan M, Yu ZX, Ferrans VJ, Irani K, Finkel T. Requirement for generation of $H_2O_2$ for platelet-derived growth factor signal transduction. Science. 1995. 270: 296-299.   DOI
27 Toikkanen S, Helin H, Isola J, Joensuu H. Prognostic significance of HER-2 oncoprotein expression in breast cancer: a 30-tear follow-up. Journal of Clinical Oncology. 1992. 10: 1044-1048.   DOI
28 Felty Q, Xiong WC, Sun D, Sarkar S, Singh KP, Parkash J, Roy D. Estrogen induced mitochondrial reactive oxygen species as signal-transducing messengers, Biochemistry. 2005. 44: 6900-6909.   DOI
29 Duncan JS, Litchfield DW. Too much of a good thing: the role of protein kinase CK2 in tumorigenesis and prospects for therapeutic inhibition of CK2. Biochimica et Biophysica Acta. 2008. 1784: 33-47.   DOI
30 Felty Q. Singh, KP, Roy D. Estrogen-induced G1/S transition of G0-arrested estrogen-dependent breast cancer cells is regulated by mitochondrial oxidant signaling. Oncogene. 2005. 24: 4883-4893.   DOI
31 Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. International Journal of Cancer. 2010. 127: 2893-2917.   DOI
32 Filhol O, Giacosa S, Wallez Y, Cochet C. Protein kinase CK2 in breast cancer: the $CK2{\beta}$ regulatory subunit takes center stage in epithelial plasticity. Cellular and Molecular Life Sciences. 2015. 72: 3305-3322.   DOI
33 Kim KJ, Cho KD, Jang KY, Kim HA, Kim HK, Lee HK, Im SY. Platelet-activating factor enhances tumor metastasis via the reactive oxygen species-dependent protein kinase casein kinase 2-mediated nuclear factor-${\kappa}B$ activation. Immunology. 2014. 143: 21-32.   DOI
34 Yager JD, Liehr JG. Molecular mechanisms of estrogen carcinogenesis. Annual Review of Pharmacology and Toxicology. 1996. 36: 203-232.   DOI
35 Zhang J, Shen B, Lin A. Novel strategies for inhibition of the p38 MAPK pathway. Trends Pharmacological Sciences. 2007. 28: 286-295.   DOI
36 Fujino G, Noguchi T, Matsuzawa A, Yamauchi S, Saitoh M, Takeda K, Ichijo H. Thioredoxin and TRAF Family Proteins Regulate Reactive Oxygen Species-Dependent Activation of ASK1 through Reciprocal Modulation of the N Terminal Homophilic Interaction of ASK1. Molecular and Cellular Biology. 2007. 27: 8152-8163.   DOI
37 Giorgi C, Agnoletto C, Baldini C, Bononi A, Bonora M, Marchi S, Missiroli S, Patergnani S, Poletti F, Rimessi A, Zavan B, Pinton P. Redox control of protein kinase C: Cell-and disease-specific aspects. Antioxidants & Redox Signaling. 2010. 13: 1051-1085.   DOI
38 Giusiano S, Cochet C, Filhol O, Duchemin-Pelletier E, Secq V, Bonnier P, Carcopino X, Boubli L, Birnbaum D, Garcia S, Iovanna J, Charpin C. Protein kinase $CK2{\alpha}$ subunit overexpression correlates with metastatic risk in breast carcinomas: quantitative immunohistochemistry in tissue microarrays. European Journal of Cancer. 2011. 47: 792-801.   DOI
39 Groenen LC, Nice E, Burgess AW. Structure-function relationships for the EGF/TGF-alpha family of mitogens. Growth Factors. 1994. 11: 235-257.   DOI
40 Hofmann F, Feil R, Kleppisch T, Schlossmann J. Function of cGMP Dependent Protein Kinases as Revealed by Gene Deletion. Physiological Review. 2006. 86: 1-23.   DOI
41 Lemke G. Neuregulins in development. Molecular and Cellular Neuroscience. 1996. 7: 247-262.   DOI