• 제목/요약/키워드: Activation Energy

검색결과 2,840건 처리시간 0.027초

Assessment of neutron-induced activation of irradiated samples in a research reactor

  • Ildiko Harsanyi;Andras Horvath;Zoltan Kis;Katalin Gmeling;Daria Jozwiak-Niedzwiedzka;Michal A. Glinicki;Laszlo Szentmiklosi
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.1036-1044
    • /
    • 2023
  • The combination of MCNP6 and the FISPACT codes was used to predict inventories of radioisotopes produced by neutron exposure of a sample in a research reactor. The detailed MCNP6 model of the Budapest Research Reactor and the specific irradiation geometry of the NAA channel was established, while realistic material cards were specified based on concentrations measured by PGAA and NAA, considering the precursor elements of all significant radioisotopes. The energy- and spatial distributions of the neutron field calculated by MCNP6 were transferred to FISPACT, and the resulting activities were validated against those measured using neutron-irradiated small and bulky targets. This approach is general enough to handle different target materials, shapes, and irradiation conditions. A general agreement within 10% has been achieved. Moreover, the method can also be made applicable to predict the activation properties of the near-vessel concrete of existing nuclear installations or assist in the optimal construction of new nuclear power plant units.

Kinetic Studies on Physical and Chemical Activation of Phenolic Resin Chars

  • Agarwal, Damyanti;Lal, Darshan;Tripathi, V.S.;Mathur, G.N.
    • Carbon letters
    • /
    • 제4권3호
    • /
    • pp.126-132
    • /
    • 2003
  • Granular Activated Carbon (GAC) has been proven to be an excellent material for many industrial applications. A systematic study has been carried out of the kinetics of physical as well as chemical activation of phenolic resin chars. Physical activation was carried out using $CO_2$ and chemical activation using KOH as activating agent. There are number of factors which influence the rate of activation. The activation temperature and residence time at HTT varied in the range $550{\sim}1000^{\circ}C$ and $\frac{1}{2}{\sim}8$ hrs respectively. Kinetic studies show that the rate of chemical activation is 10 times faster than physical activation even at much lower temperature. Above study show that the chemical activation process is suitable to prepare granular activated carbon with very high surface area i.e.$ 2895\;m^2/g$ in short duration of time i.e. 1 to 2 hrs at lower temperature i.e. $750^{\circ}C$ from phenolic resins.

  • PDF

Understanding the role of hydrogen on creep behaviour of Zircaloy-4 cladding tubes using nanoindentation

  • Suman, Siddharth
    • Nuclear Engineering and Technology
    • /
    • 제52권9호
    • /
    • pp.2041-2046
    • /
    • 2020
  • The present article investigates the influence of hydrogen concentration on the creep performance of cold-worked stress-relieved unirradiated Zircaloy-4 cladding tube using nanoindentation technique. The as-received Zircaloy-4 tube is hydrided to the concentrations of 600 ppm and 900 ppm using gaseous hydrogen charging method. Constant load indentation creep tests are performed for a dwell period of 600 s in the temperature range of 300℃-500 ℃ at 1000 μN, 2000 μN, and 3000 μN. The impact of hydrogen is evaluated in terms of steady state power law creep exponent and activation energy. The power law creep exponent decreases with increase in hydrogen concentration, however, it remains fairly constant with increase in temperature up to 500 ℃. Moreover, activation energy too decreases significantly with increase in hydrogen concentration. The mean stress exponent and activation energy are found to be 3.58 and 28.67 kJ/mol, respectively, for as-received sample.

Fluorescence quenching of 5-methyl-3-phenyl-2-[s-oxadiazol-2'-thione-5'-yl] indole by $CCl_4$ and aniline in different solvents

  • H M, Suresh-Kumar;R S, Kunabenchi;J S, Biradar;N N, Math;J S, Kadadevaramath
    • Journal of Photoscience
    • /
    • 제10권3호
    • /
    • pp.225-229
    • /
    • 2003
  • The fluorescence quenching of 5-methyl-3-phenyl-2-[s-oxadiazol-2'-thionen5'-yl] indole by carbon tetrachloride ($CCl_4$) and aniline in different solvents viz., dioxane, benzene, toluene, methanol, propanol has been carried out at room temperature to understand the role of quenching mechanisms. The Stern-Volmer plots have been found to be linear. As probability of quenching per encounter 'p' is less than unity, and the activation energy for quenching 'E$_{a}$' is greater than the activation energy of diffusion 'E$_{d}$', it is inferred that the fluorescence of quenching mechanism is not due to material diffusion alone.e.e.

  • PDF

활성화에너지점근법의 재고찰 (II) - 예혼합화염영역에서 확산화염구조 (Activation Energy Asymptotics Revisited (II) - Diffusion-Flame Structure in the Premixed-Flame Regime)

  • 김종수
    • 한국연소학회지
    • /
    • 제9권4호
    • /
    • pp.35-46
    • /
    • 2004
  • Activation energy asymptotics (AEA) for Linan#s premixed-flame regime is revisited in this paper. First, the detailed AEA procedure for the premixed-flame regime is demonstrated, so that the practitioners of AEA could easily apply the method to their own problems. In addition, the controversies surrounding the premixed-flame regime, namely the closure controversy and fast-time instability paradox, are explained. Finally, the limitation of AEA, mainly arising from the wrong prediction of fuel leakage through the reaction zone, is examined and the Zel#dovich-Linan kinetics is introduced as an alternative to meet the needs of modern combustion analysis, where the detailed chemical structure of flame is demanded.

  • PDF

가속시험을 통한 Electroluminescent film의 활성화 에너지 추정 (Estimation of Activation Energy of Electroluminescent film by Accelerated Life Test)

  • 김수경;형재필;오길구;임홍우;김명수;오근태
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제15권1호
    • /
    • pp.52-59
    • /
    • 2015
  • In this Study, we tested electroluminescent film to accelerate life by temperature, humidity, voltage, and frequency. We analyzed brightness data to estimate activation energy and verify it's suitability. All of the tests performed in operating condition. Because electroluminescent film is mostly degraded by fluorescent in operating condition. Two different sample groups were tested and compared to find common parameter.

활성화에너지점근법의 재고찰 (I);확산화염의 준정상소화조건 (Activation Energy Asymptotics Revisited (I);Quasisteady Extinction conidtion of Diffusion Flames)

  • 김종수
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제28회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.124-132
    • /
    • 2004
  • Activation energy asymptotics (AEA) for Linan's diffusion-flame regime is revisited in this paper. The main purpose of the paper is to carefully re-examine each AEA analysis step in order to clarify the some concepts that are often misunderstood among the ordinary practitioners of the AEA. Particular attention is focused on the different AEA regimes arising from the double limit of large Zel'dovich and Damkohler numbers. In addition. the expansion procedures are shown in detail and the method that the turning point condition, commonly known as the Linan's extinction condition, is found is explained.

  • PDF

TGA를 이용한 RDX의 입자 크기에 따른 열적 분해 특성 연구 (A Study on Thermal Decomposition of RDX According to the Size using TGA)

  • 범길호;김승희;김진석
    • 한국군사과학기술학회지
    • /
    • 제15권1호
    • /
    • pp.81-85
    • /
    • 2012
  • This work is related to study the thermal decomposition of 1,3,5-trinitro-1,3,5-triazacylohexane(RDX) by differential scanning calorimeter and thermo-gravimetry with Kissinger's & Iso-conversional method under nonisothermal conditions, with heating rate from 2 to $8^{\circ}C$/min or given heating rate. We calculated and compared activation energy with these two methods. Iso-conversional method is better than Kissinger's method to study decomposition mechanism. We also investigated activation energy and frequency factor by Kissinger's & Iso-conversional method with the influence of particle size. In case of single crystal, Cl-3(large crystal) has better thermal stability than Cl-5(small crystal). The activation energy increased according to the size of the particle size.

이온질화 에 있어 확산층 및 합성층 의 생성속도 및 질소 의 활성화에너지 (The Formation Rate and Activation Energy of Diffusion Layer and Compound Layer in Ion-Nitriding)

  • 성환태;유봉환;조규식
    • 대한기계학회논문집
    • /
    • 제8권5호
    • /
    • pp.476-480
    • /
    • 1984
  • 본 연구에서는 S15C 및 S45C의 이온 질화에 있어서 확산층 및 합성층의 생성 속도를 계산하였고 이를 기초로 질소의 활성화 에너지를 구하였다.

급냉응고된 과공정 Al-Si합금의 고온변형특성에 관한 연구 (High Temperature Deformation Behavior of Rapid-Solidification Processed Al-18Si Alloy)

  • 김성일
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 춘계학술대회논문집
    • /
    • pp.183-186
    • /
    • 2000
  • The high temperature deformation behavior of spray-formed Al-19wt%Si-1.87wt%Mg-0.085wt.%Fe alloy was studied by torsion testing in the strain rate range of 0.001-1 sec-1 and in the temperature range of 300-500 $^{\circ}C$. The relationship between stress temperature and strain rate is expressed using the Power law. the behavior of dynamic recrystallization is showed in 300-35$0^{\circ}C$, 1-0.1sec-1 and the behavior of dynamic recovery is showed in 450-50$0^{\circ}C$, 0.01-0.001sec-1 The size of Si particles is mall when the temperature is low and the strain rate is high. The strain rate sensitivity(m) and the apparent activation energy(Q) indicate the dependence on strain rate and temperature for flow stress respectively. The hot ductility is high when m is high and Q is low. The maps of strain rate sensitivity and apparent activation energy suggest the optimum processing conditions.

  • PDF