• 제목/요약/키워드: Activated carbon supercapacitor

검색결과 61건 처리시간 0.029초

Synthesis of Activated Carbon from a Bio Waste (Flower of Shorea Robusta) Using Different Activating Agents and Its Application as Supercapacitor Electrode

  • Ghosh, Souvik;Samanta, Prakas;Murmu, Naresh Chandra;Kim, Nam Hoon;Kuila, Tapas
    • Composites Research
    • /
    • 제35권1호
    • /
    • pp.1-7
    • /
    • 2022
  • The activated carbon is a very good choice for using as supercapacitor electrode materials. Herein, the flower of Shorea robusta, a bio-waste material was successfully used to synthesize the activated carbons for application as supercapacitor electrode materials. The activated carbon was synthesized through chemical activation process followed by thermal treatment at 700℃ in presence of N2 atmosphere using KOH, ZnCl2 and H3PO4 as the activating agents. The physicochemical analyses demonstrate that the obtained activated carbons are graphitic in nature and the degree of disorder of the graphitic carbons is changed with the activating agents. The activated carbon obtained from Shorea robusta flower (ACSF-K) electrode shows the specific capacitance of ~610 F g-1 at 2 A g-1 current density, which is higher than ACSF-Z (560 F g-1) and ACSF-H (470 F g-1) electrode material under the identical current density. The synthesized graphitic carbons also demonstrated good rate capability and high electrochemical stability as supercapacitor electrode.

금속유기골격체(Metal-organic Framework)의 함량에 따른 다공성 활성탄소 복합재료 기반 슈퍼커패시터의 전기화학적 거동 분석 (Characterization of electrochemical behaviour for supercapacitor based on porous activated carbon composite with various contents of metal-organic framework(MOF))

  • 정현택;김용렬
    • 한국응용과학기술학회지
    • /
    • 제37권5호
    • /
    • pp.1200-1207
    • /
    • 2020
  • 본 연구에서는 다공성 활성탄소와 금속유기골격체 복합재료 기반의 전극 재료와 "이온젤" 이라고 불리는 고분자 고체 전해질을 이용하여 슈퍼커패시터를 제작 하였으며, 금속유기골격체의 함량에 따른 전기화학적 거동을 관찰하여 보았다. 슈퍼커패시터의 전기화학적 특성은 순환전압전류법(CV), 전기화학적 임피던스 분광법(EIS) 및 전정류 충·방전법(GCD)으로 분석하였으며, 그 결과로, 다공성 활성탄소 대비 금속유기골격체를 0.5 wt% 첨가 하였을 때 가장 높은 전기용량값을 확인 할 수 있었으며, 0.5 wt% 이상의 금속유기골격체의 함유량은 전기화학적 특성 감소에 영향을 주는 것으로 사료되며, 이러한 결과를 바탕으로 제조된 다공성 활성탄소/금속유기골격체 복합재료 기반의 슈퍼커패시터는 다양한 분야에 활용이 가능할 것으로 판단된다.

The Preparation of Non-aqueous Supercapacitors with Lithium Transition-Metal Oxide/Activated Carbon Composite Positive Electrodes

  • Kim, Kyoung-Ho;Kim, Min-Soo;Yeu, Tae-Whan
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권11호
    • /
    • pp.3183-3189
    • /
    • 2010
  • In order to increase the specific capacitance and energy density of supercapacitors, non-aqueous supercapacitors were prepared using lithium transition-metal oxides and activated carbons as active materials. The electrochemical properties were analyzed in terms of the content of lithium transition-metal oxides. The results of cyclic voltammetry and AC-impedance analyses showed that the pseudocapacitance may stem from the synergistic contributions of capacitive and faradic effects; the former is due to the electric double layer which is prepared in the interface of activated carbon and organic electrolyte, and the latter is due to the intercalation of lithium ($Li^+$) ions. The specific capacitance and energy density of a supercapacitor improved as the lithium transition-metal oxides content increased, showing 60% increase compared to those of supercapacitor using a pure activated carbon positive electrode.

코발트망간 산화물 양전극과 활성탄 음전극으로 구성된 초고용량 커패시터 특성 (Supercapacitive Properties of a Hybrid Capacitor Consisting of Co-Mn Oxide Cathode and Activated Carbon Anode)

  • 김용일;윤재국;권재성;고장면
    • Korean Chemical Engineering Research
    • /
    • 제48권4호
    • /
    • pp.440-443
    • /
    • 2010
  • 양극인 Co-Mn oxide과 음극인 활성탄, 전해질인 6 M KOH 수용액으로 구성된 혼성 커패시터를 제조하여 cyclic voltammetry를 이용하여 전기화학적 특성을 조사하였다. 제조한 초고용량 커패시터는 0~1.4 V 전위영역에서 안정한 전위창을 나타내며, 주사속도 5 mV/s일 때 비용량 67.3 F/g, 에너지 밀도 18.3 Wh/kg, 출력 밀도는 237.7 kW/kg을 나타내었다.

Supercapacitive Properties of Composite Electrode Consisting of Activated Carbon and Di(1-aminopyrene)quinone

  • Kim, Kwang Man;Lee, Young-Gi;Park, Jeong Ho;Ko, Jang Myoun
    • ETRI Journal
    • /
    • 제38권2호
    • /
    • pp.252-259
    • /
    • 2016
  • Di(1-aminopyrene)quinone (DAQ) as a quinone-containing conducting additive is synthesized from a solution reaction of 1-aminopyrene and hydroquinone. To utilize the conductive property of DAQ and its compatibility with activated carbon, a composite electrode for a supercapacitor is also prepared by blending activated carbon and DAQ (3:1 w/w), and its supercapacitive properties are characterized based on the cyclic voltammetry and galvanostatic charge/discharge. As a result, the composite electrode adopting DAQ exhibits superior electrochemical properties, such as a higher specific capacitance of up to $160F{\cdot}g^{-1}$ at $100mV{\cdot}s^{-1}$, an excellent high-rate capability of up to $1,000mV{\cdot}s^{-1}$, and a higher cycling stability with a capacitance retention ratio of 82% for the 1,000th cycle.

Nitrogen and Fluorine Co-doped Activated Carbon for Supercapacitors

  • Kim, Juyeon;Chun, Jinyoung;Kim, Sang-Gil;Ahn, Hyojun;Roh, Kwang Chul
    • Journal of Electrochemical Science and Technology
    • /
    • 제8권4호
    • /
    • pp.338-343
    • /
    • 2017
  • Activated carbon has lower electrical conductivity and reliability than other carbonaceous materials because of the oxygen functional groups that form during the activation process. This problem can be overcome by doping the material with heteroatoms to reduce the number of oxygen functional groups. In the present study, N, F co-doped activated carbon (AC-NF) was successfully prepared by a microwave-assisted hydrothermal method, utilizing commercial activated carbon (AC-R) as the precursor and ammonium tetrafluoroborate as the single source for the co-doping of N and F. AC-NF showed improved electrical conductivity ($3.8\;S\;cm^{-1}$) with N and F contents of 0.6 and 0.1 at%, respectively. The introduction of N and F improved the performance of the pertinent supercapacitor: AC-NF exhibited an improved rate capability at current densities of $0.5-50mA\;cm^{-2}$. The rate capability was higher compared to that of raw activated carbon because N and F codoping increased the electrical conductivity of AC-NF. The developed method for the co-doping of N and F using a single source is cost-effective and yields AC-NF with excellent electrochemical properties; thus, it has promising applications in the commercialization of energy storage devices.

Supercapacitor용 $LiCoO_2$+Activated Carbon 전극의 전기화학적 특성 (Electrochemical Characteristics of $LiCoO_2$+Activated Carbon Electrode for Supercapacitor)

  • 전민제;김익준;이선영;김현수;임영택;이상현;이문배;오대희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 추계학술대회 논문집 Vol.18
    • /
    • pp.336-337
    • /
    • 2005
  • This study shows the effect of addition of $LiCoO_2$, with different milling time ranging from 0, 30, 200 hours, to the activated carbon electrode. Test cells consisting of activated carbon (100-X%) and $LiCoO_2$ (X%)were made (where X=10, 20, and 40). Test cells with varying concentrations of $LiCoO_2$ which differ in the milling time showed improved specific capacity compare with the cells fabricated using activated carbon alone. The enhanced capacity may be caused due to the addition of $LiCoO_2$ powders at varying concentration. An improved ESR value obtained may be caused by the smaller particle size of $LiCoO_2$. It was concluded that finer the particle size higher will be the efficiency.

  • PDF

Supercapacitor용 $LiMn_2O_4$+Activated Carbon 전극의 전기화학적 특성 (Electrochemical Characteristics of $LiMn_2O_4$+Activated Carbon Electrode for Supercapacitor)

  • 전민제;이선영;김익준;문성인;임영택;이상현;이문배
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.595-596
    • /
    • 2005
  • This research which it sees adds $LiMn_2O_4$ in the activated carbon electrode the test against the effect which it follows is. Test cells, which were $LiMn_2O_4$fabricated with active mass composite consisted of (100-X)% of MSP-20 and (X)% of $LiMn_2O_4$ (X=20,40,60,80,100), exhibits the better specific capacitance than those of the cells fabricated with single active mass that is MSP-20. The enhanced properties of composite active mass could be caused by capability of $LiMn_2O_4$ powders. But the resistance was increase by proportionate in $LiMn_2O_4$ addition and when mixture ratio of the activated carbon and the $LiMn_2O_4$ being similar, to be low rather to the after where had become the maximum it came.

  • PDF

Naphthalene Derivative Supported Activated Carbon Composite Electrode with Enhanced Capacitance and Potential Window

  • Hu, Mengyang;Park, Jeong Ho;Lee, Kwang Se;Ko, Jang Myoun
    • Journal of Electrochemical Science and Technology
    • /
    • 제10권2호
    • /
    • pp.99-103
    • /
    • 2019
  • A derivative of 1,4-Naphthoquinone coded HBU671 was synthesized and used in addition to activated carbon as composite electrode for supercapacitor application. From the electrochemical properties analysis, a specific capacitance of about $300F\;g^{-1}$ exhibited almost two times of that of activated carbon at a scan rate of $100mV\;s^{-1}$ and a potential window of - 0.2 - 1V. This improvement is due to the inherent redox reaction in HBU671. Cycle test also proved that this composite is still stable even after 1000 cycle within the applied potential window and it is highly recommended for practical application.