Browse > Article
http://dx.doi.org/10.5229/JECST.2019.10.2.99

Naphthalene Derivative Supported Activated Carbon Composite Electrode with Enhanced Capacitance and Potential Window  

Hu, Mengyang (Department of Applied Chemistry & Biotechnology, Hanbat National University)
Park, Jeong Ho (Department of Applied Chemistry & Biotechnology, Hanbat National University)
Lee, Kwang Se (Department of Applied Chemistry & Biotechnology, Hanbat National University)
Ko, Jang Myoun (Department of Applied Chemistry & Biotechnology, Hanbat National University)
Publication Information
Journal of Electrochemical Science and Technology / v.10, no.2, 2019 , pp. 99-103 More about this Journal
Abstract
A derivative of 1,4-Naphthoquinone coded HBU671 was synthesized and used in addition to activated carbon as composite electrode for supercapacitor application. From the electrochemical properties analysis, a specific capacitance of about $300F\;g^{-1}$ exhibited almost two times of that of activated carbon at a scan rate of $100mV\;s^{-1}$ and a potential window of - 0.2 - 1V. This improvement is due to the inherent redox reaction in HBU671. Cycle test also proved that this composite is still stable even after 1000 cycle within the applied potential window and it is highly recommended for practical application.
Keywords
Naphthoquinone; Organic additive; Composite electrodes; Supercapacitor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Kotz, M. Carlen, Electrochim Acta, 2000, 45(15-16), 2483-2498.   DOI
2 J-M. Ko, K-M. Kim, Korean Chem. Eng. Res, 2009, 47, 11-16.
3 W. Lee, S. Suzuki, M. Miyayama, Nanomaterials, 2014, 4(3), 599-611.   DOI
4 M. Alejandro, I. Suheda, D. Raul, Electrochemistry, 2013, 81(10), 853-856.   DOI
5 J. H. Won, M. Latifatu, M. Jang, H. S. Lee, B. C. Kim, L. Hamenu, J. H. Park, K. M. Kim, J. M. Ko, Synthetic Met, 2015, 203, 31-36.   DOI
6 H. S. Lee, M. Latifatu, B. C. Kim, J. H. Park, Y. G. Lee, K. M. Kim, J. W. Park, Y. G. Baek, J. M. Ko, Synthetic Met, 2016, 217, 29-36.   DOI
7 M. Quan, D. Sanchez, M. F. Wasylkiw, D. K. Smith, J Am Chem Soc, 2007, 129(42), 12847-12856.   DOI
8 T. Kitagawa, X. Zhao, H. Imahori, C. Zhan, Y. Sakata, S. Iwata, J. Phys. Chem. A, 1997, 101(4), 622-631.   DOI
9 B. K. Jin, J. L. Huang, L. Li, S. Y. Zhang, Y. P. Tian, J. Y. Yang, Anal. Chem, 2009, 81(11), 4476-4481.   DOI
10 B. K. Jin, J. L. Huang, A. K. Zhao, S. Y. Zhang, Y. P. Tian, J. Y. Yang, J. Electroanal. Chem, 2010, 650(1), 116-126.   DOI
11 Y. Kim, Y. M. Jung, S. B. Kim, S. Park, Anal. Chem, 2004, 76(17), 5236-5240.   DOI
12 M. Bauscher, W. Mantele, J. Phys. Chem, 1992, 96(26), 11101-11108.   DOI
13 M. F. R. Pereira, S. F. Soares, J. J. M. Orfao, J. L. Figueiredo, Carbon, 2003, 41(4), 811-821.   DOI
14 N. Gupta, H. Linschitz, J Am Chem Soc, 1997, 119(27), 6384-6391.   DOI
15 S. T. Senthilkumar, R. K. Selvan, N. Ponpandian, J. S. Melo, RSC Adv, 2012, 2(24), 8937-8940.   DOI