• Title/Summary/Keyword: Action Selection

Search Result 246, Processing Time 0.04 seconds

A Novel Action Selection Mechanism for Intelligent Service Robots

  • Suh, Il-Hong;Kwon, Woo-Young;Lee, Sang-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2027-2032
    • /
    • 2003
  • For action selection as well as learning, simple associations between stimulus and response have been employed in most of literatures. But, for a successful task accomplishment, it is required that an animat can learn and express behavioral sequences. In this paper, we propose a novel action-selection-mechanism to deal with sequential behaviors. For this, we define behavioral motivation as a primitive node for action selection, and then hierarchically construct a network with behavioral motivations. The vertical path of the network represents behavioral sequences. Here, such a tree for our proposed ASM can be newly generated and/or updated, whenever a new sequential behaviors is learned. To show the validity of our proposed ASM, three 2-D grid world simulations will be illustrated.

  • PDF

An Action Selection Mechanism and Learning Algorithm for Intelligent Robot (지능로봇을 위한 행동선택 및 학습구조)

  • Yoon, Young-Min;Lee, Sang-Hoon;Suh, Il-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.496-498
    • /
    • 2004
  • An action-selection-mechanism is proposed to deal with sequential behaviors, where associations between some of stimulus and behaviors will be learned by a shortest-path-finding-based reinforcement team ins technique. To be specific, we define behavioral motivation as a primitive node for action selection, and then sequentially construct a network with behavioral motivations. The vertical path of the network represents a behavioral sequence. Here, such a tree fur our proposed ASM can be newly generated and/or updated. whenever a new sequential behaviors is learned. To show the validity of our proposed ASM, some experimental results on a "pushing-box-into-a-goal task" of a mobile robot will be illustrated.

  • PDF

Action Selection Mechanism for Artificial Life System (인공생명체를 위한 행동선택 구조)

  • Kim, Min-Jo;Kwon, Woo-Young;Lee, Sang-Hoon;Suh, Il-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.178-182
    • /
    • 2002
  • For action selection as well as teaming, simple associations between stimulus and response have been employed in most of literatures. But, for successful task accomplishment, it is required that artificial life system can team and express behavioral sequences. In this paper, we propose a novel action-selection-mechanism to deal with behavioral sequences. For this, we define behavioral motivation as a primitive node for action selection, and then hierarchically construct a tree with behavioral motivations. The vertical path of the tree represents behavioral sequences. Here, such a tree for our proposed ASM can be newly generated and/or updated, whenever a new behavioral sequence is learned. To show the validity of our proposed ASM, three 2-D grid world simulations will be illustrated.

  • PDF

Teaching-based Perception-Action Learning under an Ethology-based Action Selection Mechanism (동물 행동학 기반 행동 선택 메커니즘하에서의 교시 기반 행동 학습 방법)

  • Moon, Ji-Sub;Lee, Sang-Hyoung;Suh, Il-Hong
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.1147-1148
    • /
    • 2008
  • In this paper, we propose action-learning method based on teaching. By adopting this method, we can handle an exception case which cannot be handled in an Ethology-based Action SElection mechanism. Our proposed method is verified by employing AIBO robot as well as EASE platform.

  • PDF

Cooperative Action Controller of Multi-Agent System (다 개체 시스템의 협동 행동제어기)

  • Kim, Young-Back;Jang, Hong-Min;Kim, Dae-Jun;Choi, Young-Kiu;Kim, Sung-Shin
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3024-3026
    • /
    • 1999
  • This paper presents a cooperative action controller of a multi-agent system. To achieve an object, i.e. win a game, it is necessary that a robot has its own roles, actions and work with each other. The presented incorporated action controller consists of the role selection, action selection and execution layer. In the first layer, a fuzzy logic controller is used. Each robot selects its own action and makes its own path trajectory in the second layer. In the third layer, each robot performs their own action based on the velocity information which is sent from main computer. Finally, simulation shows that each robot selects proper roles and incorporates actions by the proposed controller.

  • PDF

A Motivation-Based Action-Selection-Mechanism Involving Reinforcement Learning

  • Lee, Sang-Hoon;Suh, Il-Hong;Kwon, Woo-Young
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.6
    • /
    • pp.904-914
    • /
    • 2008
  • An action-selection-mechanism(ASM) has been proposed to work as a fully connected finite state machine to deal with sequential behaviors as well as to allow a state in the task program to migrate to any state in the task, in which a primitive node in association with a state and its transitional conditions can be easily inserted/deleted. Also, such a primitive node can be learned by a shortest path-finding-based reinforcement learning technique. Specifically, we define a behavioral motivation as having state-dependent value as a primitive node for action selection, and then sequentially construct a network of behavioral motivations in such a way that the value of a parent node is allowed to flow into a child node by a releasing mechanism. A vertical path in a network represents a behavioral sequence. Here, such a tree for our proposed ASM can be newly generated and/or updated whenever a new behavior sequence is learned. To show the validity of our proposed ASM, experimental results of a mobile robot performing the task of pushing- a- box-in to- a-goal(PBIG) will be illustrated.

Intelligent Robot Design: Intelligent Agent Based Approach (지능로봇: 지능 에이전트를 기초로 한 접근방법)

  • Kang, Jin-Shig
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.457-467
    • /
    • 2004
  • In this paper, a robot is considered as an agent, a structure of robot is presented which consisted by multi-subagents and they have diverse capacity such as perception, intelligence, action etc., required for robot. Also, subagents are consisted by micro-agent($\mu$agent) charged for elementary action required. The structure of robot control have two sub-agents, the one is behavior based reactive controller and action selection sub agent, and action selection sub-agent select a action based on the high label action and high performance, and which have a learning mechanism based on the reinforcement learning. For presented robot structure, it is easy to give intelligence to each element of action and a new approach of multi robot control. Presented robot is simulated for two goals: chaotic exploration and obstacle avoidance, and fabricated by using 8bit microcontroller, and experimented.

Action Selection by Voting with Loaming Capability for a Behavior-based Control Approach (행동기반 제어방식을 위한 득점과 학습을 통한 행동선택기법)

  • Jeong, S.M.;Oh, S.R.;Yoon, D.Y.;You, B.J.;Chung, C.C.
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.163-168
    • /
    • 2002
  • The voting algorithm for action selection performs self-improvement by Reinforcement learning algorithm in the dynamic environment. The proposed voting algorithm improves the navigation of the robot by adapting the eligibility of the behaviors and determining the Command Set Generator (CGS). The Navigator that using a proposed voting algorithm corresponds to the CGS for giving the weight values and taking the reward values. It is necessary to decide which Command Set control the mobile robot at given time and to select among the candidate actions. The Command Set was learnt online by means as Q-learning. Action Selector compares Q-values of Navigator with Heterogeneous behaviors. Finally, real-world experimentation was carried out. Results show the good performance for the selection on command set as well as the convergence of Q-value.

  • PDF

A Study of Cooperative Algorithm in Multi Robots by Reinforcement Learning

  • Hong, Seong-Woo;Park, Gyu-Jong;Bae, Jong-I1;Ahn, Doo-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.149.1-149
    • /
    • 2001
  • In multi robot environment, the action selection strategy is important for the cooperation and coordination of multi agents. However the overlap of actions selected individually by each robot makes the acquisition of cooperation behaviors less efficient. In addition to that, a complex and dynamic environment makes cooperation even more difficult. So in this paper, we propose a control algorithm which enables each robot to determine the action for the effective cooperation in multi-robot system. Here, we propose cooperative algorithm with reinforcement learning to determine the action selection In this paper, when the environment changes, each robot selects an appropriate behavior strategy intelligently. We employ ...

  • PDF

A Study on Capacity Selection of Accumulator by Mathematical Model in Hydraulic Regenerative Brake System (수학적 모델에 의한 유압 재생 브레이크 시스템의 축압기 용량 선정에 관한 연구)

  • 이재구;함영복;김도태;김성동
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.2
    • /
    • pp.48-55
    • /
    • 2001
  • An accumulator in hydraulic systems stores kinetic energy during braking action, and then that control hasty surge pres-sure. This study suggests a method to select the capacity of accumulator to control surge pressure to a desired degree. The selection method is based upon a trial and error approach and computer simulation. A mathematical dynamic model of the system was derived and the parameters in the model were identified from experimental data. A series of computer simulation were done for the brake action. The results of the simulation work were compared with those of experiments. These results of the computer simular-tion and experiments show that the proposed method can be applied effectively to control the surge pressure of the hydraulic regenerative brake systems.

  • PDF