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A Motivation-Based Action-Selection-Mechanism Involving
Reinforcement Learning

Sanghoon Lee, Il Hong Suh*, and Woo Young Kwon

Abstract: An action-selection-mechanism (ASM) has been proposed to work as a fully
connected finite state machine to deal with sequential behaviors as well as to allow a state in the
task program to migrate to any state in the task, in which a primitive node in association with a
state and its transitional conditions can be easily inserted/deleted. Also, such a primitive node can
be learned by a shortest path-finding-based reinforcement learning technique. Specifically, we
define a behavioral motivation as having state-dependent value as a primitive node for action
selection, and then sequentially construct a network of behavioral motivations in such a way that
the value of a parent node is allowed to flow into a child node by a releasing mechanism. A
vertical path in a network represents a behavioral sequence. Here, such a tree for our proposed
ASM can be newly generated and/or updated whenever a new behavior sequence is learned. To
show the validity of our proposed ASM, experimental results of a mobile robot performing the
task of pushing-a-box-into-a-goal (PBIG) will be illustrated.

Keywords: Action-selection-mechanism, behavior-based control, reinforcement learning, robot

learning.

1. INTRODUCTION

An animat-either a stimulated animal or an animal
like robot-must select an action that is appropriate for
the situation in which it lives in order to learn how to
survive. Thus, an animat with sensors and actuators is
usually equipped with an action selection mechanism
(ASM) that relates its perceptions to its actions and
makes it possible to adapt to its environment [1,2].

One of the most fundamental problems is deciding
“what to do next” [3]. This problem is known as the
action selection problem (ASP). Before deciding what
to do next, the following have to be taken into
consideration; (1) Is an action to be decided goal-
directed? In other words, an action has to be selected
in such a way that the action is the best way to reach a
goal under the current situation, where nominal
sequence of state-action pairs, known as a task
program, can be employed as a measure of distance
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between the current situation and the goal situation.
(2) If there are multiple goals to be achieved, what
goal-directed action has to be decided among actions
for different goals? However, the ASP has proven to
be a hard nut to crack due to (a) incomplete
knowledge, (b) unpredictable environments and
surroundings, (c) imperfect sensors and actuators, and
(d) limited resources [4]. As for technologies to deal
with ASP, classical Al techniques [5] and several
ethology-based techniques [6-11] have been proposed.

The architecture of earlier systems, which were
based on traditional Al planning methods, consisted
of a sense-plan-act sequential cycle and the interaction
between sensing, planning, and action components.
But traditional AI planning methods have some
limitations, because they assume that accurate
knowledge of the world’s state is provided by a
system’s sensors. This assumption is not valid due to
a number of factors, such as a changing world state,
limited processing resources, and noisy unreliable
sensory information [4].

On the other hand, as for alternatives of classical Al
techniques, there have been proposed ethologically
inspired models of action selection; insect-level and
animal-level. Brooks [12] has suggested an architec-
ture called “subsumption architecture,” which is com-
posed of competence modules with fixed priorities.
This approach gives an advantage in fulfilling a goal
in a complex environment. On the contrary, several
researchers have proposed ethologically-inspired
models of action selection [6-11,13]. Moreover,
Sheutz [14] proposed a novel method to enable
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Fig. 1. Behavior selection process by motivation
flows for generic ethology-based ASM[4].

dynamical switch among different action selection
strategies. Those models have shown good
performance in imitating real-life behavior, since
action selection in those models has been based on
competence modules with changing priorities.
However, as shown in Fig. 1, their action has been
selected not for achieving a long-term goal, but for
satisfying a short-term drive generated by motivation
flow. Thus, these models of action selection will not
be adequate for a robot to achieve a task or
equivalently a long-term goal. Furthermore, most of
those works involved ‘fixed’ pre-designed state-action
behavior systems and did not incorporate learning.
Thus, they may not be appropriate in dynamic
environments. Recently, several researchers have
suggested ethologically-inspired models of action
selection that incorporate learning [9,15-23]. However
much work remains to be done to cope with
shortcomings such as lack of goal-directed action
selection and lack of sequential-behavior learning.
While several researches [13,23] are coping with goal-
directed action selection, there is a problem with
applying it to the restricted field.

In this paper, we suggest a novel architecture based
on ideas from ethology that allows learning to be
combined with action selection. Furthermore, we
improve current ethology-based architectures to deal
with sequential behaviors. Most typical tree structures
organize actions into a hierarchy ranging from high-
level “nodes” or activities to detailed primitive nodes
via mid-level composite actions. And, in these
structures, motivation flows are well described. But,
behavior flows are out of focus (see also Fig. 1). Thus,
only primitive actions are actually executable. Our
proposed ASM, however, is designed to select the
most appropriate motivation in a given situation. In
addition, our ASM can allow an appropriate action to
be executed for every node within that motivation. As
a result, our ASM is designed to choose correct
sequential behaviors to satisfy a motivation and thus

El

enable the system to learn necessary sequential behav-
iors.

2. ACTION SELECTION MECHANISM

2.1. Previous works on ASM

ASMs can be generally classified as either
arbitration or command fusion architectures such as [6,
24]. Arbitration mechanisms select one behavior from
a group of competence modules. Arbitration mech-
nisms for action selection can be divided into fixed
priority-based, winner-take-all, and state-based mech-
nisms [25].

The subsumption architecture proposed by Brooks
[12] is a typical fixed-priority-based mechanism. This
architecture consists of a series of behaviors, which
constitutes a network of hardwired finite state
machines. In the subsumption architecture, action
selection is very simple: Behaviors at a higher level
override behaviors at a lower level. Thus, any
competence module at any given level has a priority,
and high-priority modules suppress low-priority
modules. The control system is hardwired directly in
the structure of the behaviors and their interconnec-
ions, and thus cannot be altered without redesigning
the entire system. This type of architecture is called
“fixed priority-based arbitration architecture.”

Another type of arbitration architecture is the
winner take-all architecture suggested by Maes [8]
and Blumberg [9], which is more flexible than the
subsumption architecture. In this mechanism, action
selection results from the interaction of a set of
distributed behaviors that compete until one behavior
wins over the others. Each competence module has a
priority that varies according to its own external and
internal influences. Because these mechanisms are
more flexible than those in a fixed priority-based
architecture, learning processes can easily be
incorporated.

Blumberg [9] also suggested an architecture that
allows learning to be combined with action selection,
based on ideas from ethology. However, that work
mainly focused on “doing the right thing in a given
situation.” Thus, their structure selects only a single
behavior to satisfy its need and learns simple state-
action pairs. Note that behaviors used to achieve a
mission generally consist of a series of behaviors.
Selecting a single behavior in a given situation is
usually not enough to accomplish a mission.

Recently, researchers had tried to adapt current
ASM methods to real robot applications [26,27] or
agents in virtual environment [28]. In [11], Sawada
proposed EGO (Emotionally GrOunded) architecture
applied to Sony QRIO SDR-4X I, where motivation
flows have been employed, as in activation network of
Maes. Once a motivation becomes activated by some
stimuli, its corresponding action function designed by
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FSM (Finite State Machine) begins to work. The
situated behavior layer in EGO consists of behavior
modules, where they are organized as nodes of a tree-
structure, and a node becomes active as a motivation
flows into the node. Here, relation of parent and child
nodes of the tree is given not as a behavior hierarchy
for a long term goal, but as a concept hierarchy. Thus,
a sequence of behaviors from the tree will not drive
the robot to the long term goal.

As we discussed earlier, sequence of behaviors has
not been explicitly handled in most of the ethology
based ASM. Bryson considered planning sequences of
behaviors to be “reactive plans,” a formalized
expression which is often used in behavior-based
approaches [29]. The reactive plan is a more compli-
ated plan structure used for circumstances in which
the exact ordering of steps cannot be predetermined,
and consists of three elements: priorities, precondi-
ions, and actions.

2.2. Design objectives of ASM

A robot task is usually described as a nominal
sequence of state transitions from initial state sito goal
state sg. State transition is made by a robot behavior.
However, it is noted that state can be changed without
the help of any robot behaviors. For example, while a
robot is approaching a person in a room to say “Hi”,
the person may go out of the room. In this case, the
robot does not have to say “Hi”, since the state that
the robot is expecting has been changed to an
unexpected state. That is, a state can be accidentally
changed without resort to the intended behaviors of
robots. It is very difficult to consider all such possible
accidental state changes when programming a robot
task by classical programming languages. Here,
assume that all possible states can be defined for a
robot and its environment. This assumption can be
made to hold by defining any unexpected state as an
exceptional state. Then, the problem is (1) to program
a robot task as an irreducible Markov process, in
which a state in a robot task program can be migrated
to any state in the robot task program. This problem
requires ASM to be designed as a fully connected
finite state machine as shown in Fig. 2. In addition, it
is necessary to know how much the current state is
close to the goal state, since closeness to the goal state
is a critical motivation to select actions and/or a task.
(2) To fulfill such an additional requirement, a fully
connected FSM as a task program needs to be
described as an ordered sequence of state-action pairs.
ASM has to support programming of such an ordered
sequence of state-action pairs. (3) Furthermore, ASM
has to be structured in such a way that some portions
of such a sequence of state-action pairs for a robot
task need to be learned to adapt to new situations,
and/or have to be reused in another task of the robot.

To solve design problems (1), (2), and (3) as

&
&
&

Fig. 2. An exemplar task program described as fully
conneeted finite state machine.

described above, we will design Behavioral Motiva-
ion (BM) as a basic unit to control behavior flow as
well as motivation flow. For this, BM will be
designed as a valued connector associated with
Perception Filters (PF) and a behavior (or Action
Pattern - AP), where PF is associated with promotion
of motivation. PF is a function to compute degree of
matching for a given context and sensory information.
And, An action pattern is a sequence of primitive
actions. A sequence of BM will be represented as a
task program. A BM is to be designed to be
dynamically inserted or deleted together with its
associated PF and behavior in a task program. In this
sense, such a relocatable BM will be referred to as
Dynamic BM (DBM). On the other hand, a sequence
of BM will be denoted as a task BM to represent a
task program. To distinguish such a task BM from
DBM, we will name such BM task as Static BM
(SBM). Now, the order of DBM sequence is designed
in such a way that the goal is located at a leaf node,
and a DBM is located nearer to the goal node than the
other DBMs as far as behavior associated with the
DBM makes the distance to the goal shorter than
behaviors in other DBMs. And, the DBM is designed
such that value of a DBM flows into its child DBM, if
the DBM is allowed to release its value by PF of one
of its descendent DBMs. And then, a behavior is
computationally selected among behaviors in a task
program by comparing values of DBMs in the task
program. By doing so, a sequence of DBM acts like a
fully connected finite state machine. And also,
nearness to the goal can be easily monitored by index
of order of the DBM.

2.3. Dynamic behavioral motivation (DBM)

As explained in Sec. 2.2., a robot has to generate a
series of behaviors and select the most appropriate one.
To accomplish this, DBMs are organized into a
flexible hierarchical network that can be changed by
the learning process. A DBM has its own activation
value that depends on the values from the PF, parent
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node, and releasers. A releaser can be considered as a
PF. But it is used to pass or block the activation value
of a DBM. A DBM outputs its value to its child node
while the relevant stimulus is incoming through the
corresponding PF. The schematic of a DBM is
illustrated in Fig. 3. The activation value is
accumulated through the path while the relevant
stimulus is presented by the PF. Releasers play the
role of blocking the flow of activation values. The
value of a DBM is given as

Vosu, = (Vosu,_, +Ver,)STEP (Vey,) (1)

Voem, = (Vosu,_, + Ver,)STEP ( by VR,,) ; (2)
L=IES

where i, m, and £, respectively, imply the index of the
ith node, the number of DBMs for a task, and the
index of related releaser. And, STEP(x) is defined as

1, forx>0

STEP(x) = { 0, forx=0. 3

As shown in Fig. 3, Vpamiis a value where values
of PFs are added into the value of the parent node’s
DBM. However, V"pBmiis the result that values of a
releaser are added on Vprss. V'DBM is repetitively
used in the DBM calculation of child nodes. The most
appropriate DBM will be selected by choosing the
maximum-valued DBM, V" psas, which is described
by

arg max

Indexo fselected DBM = )
icaliDBM for a task

(Voeag)- (4)

Now, we will show how (1)-(4) work by employing
a task example as in Fig. 16(b). As shown in Fig,
16(b), nominal order of sequence for the pushing-a-
box-into-a-goal  (PBIG) task is given as
“search—move-to-box—turn—push.” After the task
is initiated, it must be decided what to do next.
Suppose that “PF:box and goal are not found” is
active, while other PFs are inactive. Then “DBM:
search” will get the largest value among DBMs for the
PBIG task, which will result in activation of “AP:

Node of SBM |_SBM

Node of DBM

Battery
Charge

Pushing Box

Layer of SBM

Layer of DBM§

Fig. 4. Two SBMs in a flat network configuration.

search” behavior. However, if “PF: box and goal are
close” is also active, this PF asks DBM (turn), DBM
(move-to-box), and DBM (search) to release their
values such that the values flow into DBM (push).
From (1) and (2), VDBMpush) = VDBM(turny + VPF(pushy =
VDBMmove—to—box) + VPFturm) + VPF(push) = VDBM(searchy +
VPR(nove~to-box) + VPFeurny+ VPFpush). This implies that
VDBMpusky > VDBM(urn) > VDBM(move—to—box) >
VDBM(search). Thus, “AP: push” behavior will be
activated. By nominal order of a PBIG task, the robot
is supposed to be driven to do “move-to-box” after
“search” behavior. But, by an accidental transition of
the environmental state from DBM (search) to DBM
(push), “pushing” behavior is activated just after
“search” behavior. This can be considered as an
example to show equivalence between a fully
connected Finite State Machine and our DBM-based
ASM.

2.3. Static behavioral motivation (SBM)

An SBM implies a task. An SBM has a group of
sequence DBMs to do the task. And, several SBMs
(tasks) are organized as a flat network as shown in Fig,
4. Each SBM will take a value to be used for the task
selection process. An SBM is activated for given
external stimuli and internal needs in a flat network,
when its value is the largest for SBMs in the flat
network. Here, internal needs will come out from the
corresponding internal state (IS) to represent drives
such as hunger or thirst. The AP, which reduces a
certain IS or satisfies drives, is called a consummatory
action, and other APs are called appetitive actions.
The value of an IS is changed after an AP is executed.
The relation of an AP to an IS can be defined based on
Hull’s theory [30]. The value of an SBM is computed
by combining values of ISs with values of PFs. In
addition, an SBM receives a feedback effect from the
DBM group underneath it. The value of an SBM is
calculated using the equation given below.

Vepr, = D Vis, + X Ver, +ef fectpp, (5)

where i, /, and k, respectively, imply the index of the
i* SBM, the index of a related IS, and the index of a
related PF.

In (5), the term effectDsu indicates the strength
showing how easily the goal can be achieved for a
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Fig. 5. The process of our proposed action selection.

given current state of the environment. Thus, the value
of an SBM may be high not only when the needs of
the SBM become more important than those of other
SBMs, but also when its goal is believed to be easily
achieved in the current state of the environment.

Fig. 5 shows a summary of process of our proposed
action selection mechanism integrating learning
processes. After the SBM of the largest value is
chosen, one of the following two processes is
activated in order to select an action: ‘exploit’ and
‘explore’. An ‘exploit’ process is performed when a
BM system has enough knowledge to satisfy its
motivation. The ‘exploit’ process is performed by
executing the most appropriate AP (or behavior) for a
given situation. On the other hand, the ‘explore’
process is activated whenever a DBM or a sequence
of DBMs is not available for an SBM. This process
always requires us to have an effective learning
system integrated with the ASM.

v 3. SHORTEST PATH-BASED
REINFORCEMENT LEARNING OF DBM

As described in Section 2, a task of a robot can be
effectively programmed in the form of a fully
connected finite state machine by employing our
proposed DBM and SBM. However, it is still
necessary to carry out numerous programming trials
as well as to use sufficient domain-specific task
knowledge. Environmental states from the viewpoint
of robot sensors will most often be different from
those from the viewpoint of task programmers,
primarily due to lack of precise perception using
contemporary sensors with reasonable price. This
difference may cause a robot to meet unknown
situations. Thus, to cope with such a programming
difficulty, a robot has to be endowed with the

capability to learn a sequence of ordered DBM for a
task or a subtask.

In this section, a model-based reinforcement
learning technique [31] is used, where the model will
be progressively refined whenever a successful
sequence of behaviors is achieved. Specifically, under
a current model, shortest paths are found from all
states to the goal, where Q-value is increased
primarily for the state around the shortest-path. And,
exploitation and exploration are performed based on
Q-values of the states. If there is found another
successful sequence of state-behaviors, then it will be
used to refine the model again. And the same process
as above is repeated.

Fig. 6 presents our proposed Shortest Path-based
Reinforcement Learning (SPRL) process. In Fig. 6, a
Long Term Memory (LTM) consists of s, a, s'and
v, Where s is a current state, a is a current action, s’
is the next state which is obtained by action a in a
state of s, and v,z is a reliability value. LTM is
updated whenever a learning episode is completed. An
episode is a trajectory of state-action pairs for a task
which starts from an initial states, and is terminated at
a goal state, or a state violating time bound. Note that
all states and actions of the LTM can be represented
as nodes and edges of a direct acyclic graph as shown
in Fig. 7(a). Thus, an LTM may include several paths
from all states to a goal state. Among several paths, as
shown in Fig. 7(b), we can find shortest-paths from all
states to a goal state in the graph model. Now, Q-
values of state-action pairs around shortest paths are
increased, and Q-values of other state-action pairs will
not be increased. Thus, it is expected that state-action
pairs around shortest paths are selected with a
relatively high probability. This type of Q-value
update strategy can be considered as a process to
reduce exploration space. And thus, it is expected that
the number of learning episodes is drastically lowered

INITIALIZE Q(s,a) and LT M(s,a,s’);
LOAD learning paramters o, ¥, 1;
DO forever
choose a from s with respect to Q value;
execute a;
observe s’ and 7;
Q(Sva) = Q(s,a) + (x[ymaxa/Q(s',a’) - Q(Sva)];
update LT M(s,a,s’);
IF s'=goal state THEN
goal state g = 5;
findShortestPath(g) — shortest paths from
all state to g;
REPEAT for all s, a
IF (s, a) in shortest path THEN
Q(s,a) = 77(1 - Q(s,a)) + Q(Sva);

VirMs.as) = M = Virmas)) * Virm(sas)s

Fig. 6. Shortest path-based reinforcement learning
(SPRL) process.



A Motivation-Based Action-Selection-Mechanism invoiving Reinforcement Learning

(b) shortest paths.
Fig. 7. An example of shortest path finding.

by combining Q-learning with a shortest path finding
method.

A learned tuple of LTM, (s, a, s') with values that
exceed a certain threshold will be added to the BM
tree. Fig. 8 shows the process where LTM entries
having the high reliability are added to the DBM tree.
Next, a process in which learned state-action pairs are
added to the DBM tree will be illustrated. Note that
Fig. 8 shows the reliability values of LTM after some
trials were performed, and viry of (54, a4 .5) exceeds
the threshold. In this paper, we set the threshold value
to 0.8. Because a tuple, (s4, a4,5,) of the LTM has not
been included in the corresponding DBM tree, this
tuple will be added to the branch of the SBM. After
more trials are performed, the LTM may be changed
as shown in Fig. 8(b). In Fig. 8(b), there are two

Table 1. Comparisions of capacity of ASMs.
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Fig. 8. An example of inserting DBMs form LTM.

tuples with values exceeding the threshold. Because
the value of (s3, a3, s4) exceeds the threshold, the tuple
will be added to the DBM tree. The position in which
the new tuple is added is a parent node of a certain
DBM. A state of PF in that DBM is the same as s'in
the tuple. To reach the goal, the action of a3 in (s3, a3,
s4) must precede the action a4 in (s4,a4,5,). Thus, the
position of that entry will be the parent node (sy4, gy,
sg). After many trials, a new appetitive behavior to
reach the goal can be added to the BM tree as shown
in Fig. 8(c).

4. COMPARISONS WITH OTHER ASMS
When the proposed ASM method is compared with

other existing behavior-based Al methods or the
ethology-inspired ASM  methods, the following

Capacity structure of behavior _ bchawgr behavior coordition strategy 1nc‘0p0ra‘t10n
ASM sequencing of learning
proposed ASM hierarchical O dynamic priority O
subsumption flat X fixed priority X
[12,32]
activation flat(network) 0 dynamic priority X
network [8]
reactive plan [29] flat 0 dynamic priority X
ethology- flat X fixed priority X
based [9,11,33]
hierachical hierarchical X fixed priority X
FSM-based [13,34]
RL- flat X dynamic priority 6]
based [16,20,22]
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characteristics are observed: (1) hierarchical represen-
tation of behaviors, (2) goal directed sequential behav-
ior generation, (3) dynamic priority based behavior
coordination strategy, and (4) incorporation of
learning.

To better clarify the characteristic of the proposed
ASM method, there will be shown a comparison of
our proposed ASM with the well-known ASM
methods in Table 1. In the first column of Table 1,
‘structure of behavior’ shows whether behaviors of
the ASM are hierarchically comprised or not. If
behaviors are hierarchically comprised, robot
programming can be more instinctive. Moreover, a
group of behaviors which consists of robot programm-
ing can be reused. In the second column of Table 1,
‘behavior sequencing” shows whether ASM can
produce and manage the sequence of behavior or not.
‘Behavior sequencing’ means whether the previously
chosen behavior has an effect on the selection of
behavior. In the third column of Table 1, if ‘behavior
coordination strategy’ is fixed, the priority of a
behavior cannot be changed. Therefore, in the same
external condition, a fixed priority-based ASM output
only has the same behavior sequencing. However, the
dynamic priority-based behavior coordination strategy
helps an agent to show various kinds of behavior
sequencing. In the fourth column of Table 1,
‘incorporation of learning” means that action selection
strategy can be modified by a learning mechanism.
ASM with ‘incorporation of learning’ helps a robot to
accomplish a task in a dynamically changing environ-
ment.

5. EXPERIMENTAL RESULTS

5.1. Experimental mobile robot system

Our own mobile robot is designed and employed
for our experiments as shown in Fig. 9. The robot has
been designed to have a single CCD camera with
pan/tilt guide, and to be controlled by a two-wheeled
differential drive system and an embedded PC (VIA
C3).

5.2. Experimental objectives
To show the validity of our proposed ASM
integrating reinforcement learning, experimental set-

-

Fig. 9. Photos of our designde mobile robot.
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Fig. 10. A task description for PBIG task.

up for a pushing-a-box-into-a-goal (PBIG) task of a
mobile robot is organized as shown in Fig. 10.

In this experiment, it is shown that a mobile robot
can learn action patterns to push a box into a goal by
our SPRL. For this, a robot is made to receive a
reward whenever it completes the PBIG task
successfully.

5.3. Implementation notes

It is a first note of object extraction from a CCD
Camera Image. An image of an object from a camera
needs to be separated from the background to
recognize the object. For this, in the phase of color
image processing, HSV (Hue, Saturation, Value)
representation is employed to minimize the variational
effect of light intensity. After getting the images of
objects separated from the background image, a center
of gravity is computed. And then, the center of gravity
is mapped into a relative angle of the object and the
area is mapped into the relative direction of the object.

It is a second note of Bayesian filter-based design
of logical sensors. For a pushing-a-box-into-a-goal
task, a robot must recognize locations of objects such
as boxes and a goal. It is recalled that, our robot has
only a single camera to find objects. And, due to the
limited field of vision of the camera, our robot could
not recognize locations of all objects around the robot
at any time. Therefore, our robot is required to have a
logical sensor to process perceptual state information,
especially to estimate locations of out-of-sight-objects.
To estimate locations of multiple objects, Bayesian

state =< o, f3,7,6 >

a = 0 when |Opox — goui| < threshold
o = 1 when a box is left of a goal

o = 2 when a box is right of a goal

B = 0 when |65, — Ogour| < 10°
B =1 when |0y — gout| < 70°
B =2 when |05 — Ogour| < 1207

¥: state-division according to the angle of a box
& state-division according to the angle of a box

Fig. 11. Definition of states.
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Table 2. Definition of primitive actions.

Table 3. Averaged number of steps in action patterns.

filter (grid-based) is used here. The key idea of
Bayesian filter is to estimate the posterior probability
density over the state-space condition on the data [35].
It is a third note of state organization and primitive
actions for action patterns. Action patterns are
sequences of primitive actions to satisfy specified
subgoals. The relative location between the robot and
objects such as a box and a goal are used as perceptual
states for the action pattern. State organization and
primitive actions for action patterns for a PBIG task
are shown in Fig. 11 and Table 2.

5.4. Learning of action patterns

Four action patterns are necessary to accomplish
the PBIG task as shown in Fig. 10. Among them,
three action patterns of “move-to-box”, “turn”, and
“push” are learned from the scratch by SPRL. To
learn an action pattern, 10 trials are performed at two
different initial locations as shown in Fig. 12. Because
a robot is assumed to have no initial knowledge on the
action patterns, the robot often gets away in a 2m x
2m experimental playground. Such overruns from the
playground are regarded as a failure, and trajectories
of failed trials are excluded in learning action patterns.
The learning parameters of the SPRL process in Fig. 6
are given for the experiment as follows; a= 0.8, y=
0.8, 7= 0.2. Performance of the action pattern by
SPRL is shown in Fig. 13 to be compared with those
by Q-learning and hand-coded action patterns. It is
observed from Fig. 13 that performance of the action
pattern by SPRL is almost similar to those by the
other two action patterns, and convergence of SPRL is
faster than that of Q-leamning. To compare perfor-
mance of three different methods in terms of the
number of steps for the whole PBIG task, the
averaged number of primitive actions for each action
pattern after 10 trials of learning are shown in Table 3
for the methods of hand-coded, SPRL, and Q-learning,
respectively. It is observed from Table 3 that the
action pattern for the hand-coded method requires 55
steps, and the action patterns for SPRL, and Q-
learning require 65 steps and 70 steps, respectively for

Name forward movement Heading angle hand-coded SPRL Q-learning
(mm) movement (degree) move-to-box 24 3 31
TURN L 0 5
_ 2
TURN R 0 < turn 20 20 24
MOVE_FL 20 push 1 17 18
MOVE _FFL 40 total 55 65 70
MOVE F 40
MOVE_FFR 40 5 r } o
MOVE_FR 20 -5 coaL | Lo
BACK -40 |
BACK L 20 5 '
BACK R -20 -5

(a) Location 1. (b) Location 2.

Fig. 12. Two relative locations of a robot with respect

to the box.

] —a—  SPRL
3501 —e— Q-learning
300+ ---- Hand-coded
250
2004
1504 \-\

] N
104 . /l o .

1o R eIl
504

T T T T T
0 2 4 6 8 10
episodes

(a) The case when starting configuration of the robot,
the box, the goal is given as shown in Fig. 12(a).

406, —a—  SPRL
~-g-  Q-learning
---- Hand-coded

3501

3004

2504

2004

150]
100{ . .

504

episodes

(b) The case when starting configuration of the robot,
the box, the goal is given as shown in Fig. 12(b).

Fig. 13. The number of steps for PBIG task.

the whole PBIG task. From this experiment, the action
patterns learned by SPRL method are observed to
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(a) Hand-coded.
Fig. 14. Trajectory of a robot.

(b) SPRL learning,.

Fig. 15. Experimental setup for multi-task coordina-
tion.

show reasonable performances for the PBIG task
when compared to those by the other two methods.

A clear difference between hand-coded and
learning methods is mainly observed in the learning of
‘move-to-box’ action pattern. From the action patterns
obtained by learning experiments, combination of two
primitive actions ‘moveF’ and ‘moveFFL’ defined as
in Table 2 is often observed as in Fig. 14. It is noted
that ‘moveF’ is observed as the primary actions. As
the number of trials is increased, the performances of
action patterns by hand-coded and learning methods
are observed to be very similar,

5.5. Learning of action patterns

After learning of action patterns is completed,
another learning process can be activated to learn
associations between perception filters and action
patterns, and a sequence of these associations; this is
known as learning of a sequence of DBMs.

A PBIG task and a battery-charging task are to be
performed. Two corresponding SBMs are assumed to
be innately defined. However, necessary DBMs are
not attached to those two SBMs. Thus, DBMs shouid
be learned to do two SBMs. Fig. 15 shows an
experimental environment for the PBIG and battery
charging tasks. The internal state value for PBIG
SBM is given as a constant value, and internal state
value for battery-charging is designed to become
higher as battery voltage becomes low. When battery-
voltage becomes low, the value of SBM being
affected by internal state value for battery charging
becomes high. Thus, SBM for battery-charging task is
selected. But, when the battery-voltage is high, the
value of SBM for battery-charging becomes low. Thus,
SBM for the PBIG task is selected. After one of two
SBMs is selected, learning is performed because there

(a) Before SPRL process.

[ TPF hargiog
station i not
tound
charging '
station
PF: charging
station is neat
e

i | P sbox and
11 goslarein
i1 Tonefing

(b) After SPRL process.

Fig. 16.DBM ftrees for two SBMs; pusing-box-into-a-
goal and battery charging.

Table 4. Number of steps per episode(in case of
‘move-to-box’ AP).

episode 1 2 3 4 5

No. of steps | 45 12 8 7 7

are no DBMs to achieve the SBM. Here, necessary
action patterns are available, since they can be learned
as shown in Sec. 5.4, SBM and DBM structures
before and after learning are shown in Fig. 16(a) and
(b), respectively. In Table 4, the number of action
patterns is shown for each episode. It is observed from
Table 4 that 45 steps are required for the first episode,
but fortunately only 7 steps are shown fo be necessary
for the 4th and the 5th learning trials. Owing to our
proposed SPRL method, learning of sequential
behaviors is completed within a relatively small
number of episodes.

It is remarked that success or failure of a task is
heavily dependent not on the action selection method,
but on other factors including the search strategy for
learning, and perception accuracy. Therefore, there
were difficulties to measure the performance of our
proposed ASM. As one of our future works, long term
performance needs to be measured for multiple SBMs
for more practical tasks.

6. CONCLUSIONS

It is most important for a robot to select and learn
the best behaviors to survive in an environment. To
accomplish this, we proposed a hierarchical organiza-
tion of competence modules called SBMs and DBM:s.
The SBM was used to select the most appropriate
motivation in a given situation. The DBM was used to
select a behavior that could satisfy its motivation. By
utilizing releasers used to pass or block the activation-
value of a DBM, a DBM tree can generate sequential
behaviors. Thus, not only can our proposed ASM
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select the most appropriate behavior in a given
situation, it can also deal with sequential behaviors.

Furthermore,

our proposed flexible tree-network

enables the robot to effectively add learned behaviors.
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