• Title/Summary/Keyword: Action Potentials

Search Result 204, Processing Time 0.034 seconds

Taste Transduction (맛의 신호전달)

  • 임호수
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.4
    • /
    • pp.645-653
    • /
    • 2003
  • Taste receptor cells respond to gustatory stimuli using a complex arrangement of receptor molecules, signaling cascades and ion channels. When stimulated, these cells produce action potentials that result in the release of neurotransmitter onto an afferent nerve fiber that in turn relays the identity and intensity of the gustatory stimuli to tie brain. A variety of mechanisms are used in transducing the four primary tastes. Direct interaction of the stimuli with ion channels appears to be of particular importance in transducing stimuli reported as salty or sour, whereas tile second messenger systems cyclic AMP and inositol trisphosphate are important in transducing bitter and sweet stimuli. In addition to the four basic tastes, specific mechanisms exist for the amino acid glutamate, which is sometimes termed the fifth primary taste. The emerging picture is that not only do individual taste qualities use more than one mechanism, but multiple pathways are available for individual tastants as well.

Bilateral Femoral Neuropathy Combined with Multifocal Abscesses (다발성 농양과 동반한 양측성 대퇴신경 마비)

  • Kim, Chul Hyun;Lee, Yang Soo;Byun, Seung Deuk;Lee, Zee Ihn
    • Annals of Clinical Neurophysiology
    • /
    • v.7 no.2
    • /
    • pp.127-129
    • /
    • 2005
  • We report a 29-year old female who developed bilateral femoral neuropathy combined with multiple abscesses in both thigh muscles. She was present with weakness in both lower extremities for 15 days and intermittent chilling sense for 3 months. Nerve conduction study showed complete absence of compound muscle action potentials in bilateral femoral nerves when stimulated at inguinal area. Electromyographic examination revealed no motor unit action potentials in both rectus femoris and vastus medialis muscles. CT revealed multifocal abscesses in bilateral thigh muscles. After antibiotic treatment, the patient's neurologic symptoms were improved.

  • PDF

Effects of a ${\delta}-opioid$ Agonist on the Brainstem Vestibular Nuclear Neuronal Activity of Rats

  • Kim, Tae-Sun;Huang, Mei;Jang, Myung-Joo;Jeong, Han-Seong;Park, Jong-Seong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.3
    • /
    • pp.137-141
    • /
    • 2005
  • This study was undertaken to investigate the effects of [$D-Ala^2$, D-Leu^5$]-enkephalin (DADLE) on the spontaneous activity of medial vestibular nuclear neurons of the rat. Sprague-Dawley rats, aged 14 to 16 days, were anesthetized with ether and decapitated. After enzymatic digestion, the brain stem portion of medial vestibular nuclear neuron was obtained by micropunching. The dissociated neurons were transferred to a recording chamber mounted on an inverted microscope, and spontaneous action potentials were recorded by standard patch-clamp techniques. The spontaneous action potentials were increased by DADLE in 12 cells and decreased in 3 cells. The spike frequency and resting membrane potential of these cells were increased by DADLE. The depth of afterhyperpolarization was not affected by DADLE. The potassium currents were decreased in 20 cells and increased in 5 cells. These results suggest that DADLE increases the neuronal activity of the medial vestibular nuclear neurons by altering resting membrane potential.

Effects of Opioid Pure Agonists on the Excitibility of Frog Sciatic Nerve Fibers

  • Lee, Jong-Hwa;Frank, George-B.
    • Archives of Pharmacal Research
    • /
    • v.16 no.2
    • /
    • pp.83-88
    • /
    • 1993
  • opioid pure agonists, morphine, meperidine and methadone, were used to investigate the effect on the opioid receptor of fron sciatic nerve fibers using sucrose gap apparatus. When applied extracellularly by perfusion, morphine, methadone and meperidine significantly depressed the amplitude of the action potential in frog sciatic nerve fibers as a dose-dependent $(10^{-10}\;M-10^{-2}\;M)$ manner. The depression with morphine or methadone was partially antagonized by the simultaueous treatment with a lower $(10^{-10}\;M-10^{-8}\;M)$ concentration of naloxone, but that of meperidine was not blocked. When the three opioid agonists were applied intracellularly by placing it in a compartment with a cut end of the sciatic nerve fibers, all of themn depressed the amplitude of the action potentials by similar potency, and these reductions significantly blocked by pretreatment of lower concentration $(10^{-10}\;M-10^{-8}M)$ of naloxone. These results support the previous findings by other workers that the stereospecific opioid receptors of this preparation are located on or near the intracellular opening of the sodium channels which are sensitive to naloxone.

  • PDF

Effects of $Ca^{2+}$ and $K^+$ on the Spike Action Potentials in Oxytocin-induced Uterine Contractions (칼슘 및 칼륨이온이 흰쥐 자궁근(子宮筋) 활동전압(活動電壓)에 미치는 영향(影響))

  • Kim, Chul-Soo;Kim, Ki-Whan
    • The Korean Journal of Physiology
    • /
    • v.20 no.1
    • /
    • pp.43-52
    • /
    • 1986
  • The influences of extracellular $Ca^{2+}\;and\;K^+$ upon the spike action potentials were studied in isolated uterine strips of rat. Regular, rhythmic uterine contractions were induced by the administration of oxytocin$(0.2{\sim}0.5\;I.U.)$, and recorded with force transducer. Spike action potentials were extracellularly measured by use of suction electrode, and compared with those recorded intracellularly by glass microelectrode. The results obtained were as follows : 1) The frequency and duration of spike bursts, and the number of spikes in a burst could be analyzed by use of both methods. But the absolute values of membrane potential were not measurable with the suction electrode. 2) The duration of contraction$(CD_{90};\;the\;duration\;of\;90%\;relaxation)$ was lengthened from the control 17.0 sec to 20.6 sec, in parallel with the increase of spike number from the control 21 to 26, as the increase in $Ca^{2+}$ concentration from 2 to 4 mM. 3) The amplitude and frequency of contractions were gradually decreased, simultaneously with the decrease in the number of spikes in a burst, when the $Ca^{2+}-antagonist$, verapamil was administered cumulatively. 4) The number of spikes was changed from the control 15 to 7, in cabs of the administration of ver)'low dose of verapamil$(10^{-6}\;g/l)$. 5) Increase in the numbers of spike bursts was well matched to the increase in frequency of contractions when extracellular $K^+$ was increased.

  • PDF

Rectus Femoris Action Potentials under 4 Positions during Straight Leg Raising (하지거상운동시 자세변화에 따른 대퇴직근의 활동전위)

  • Kim, Ho-Sung;Yu, Chang-Joon;Hong, Seung-Ho;Current, Marion E.
    • Physical Therapy Korea
    • /
    • v.2 no.1
    • /
    • pp.44-50
    • /
    • 1995
  • The purpose of this study was to investigate which of 4 positions produced the highest action potential in the rectus femoris muscle of normal adult subjects. Testing was performed in supine with the right leg performing a simple straight leg raise with the knee fully extended. The left leg, however, was placed in 4 different positions: 1. Full support with $0^{\circ}$ flexion. 2. Flexed on the plinth with $60^{\circ}$ knee flexion and foot flat. 3. Same as N0.2 but with $90^{\circ}$ knee flexion. 4. Left leg hanging over the end of the plinth with $90^{\circ}$ knee flexion, $0^{\circ}$ hip flexion and no foot support. This study was designed to compare the level of electromyographic activity of the rectus femoris under 4 positions. Fourty-three healthy young adults performed three trials of each exercise condition in random order in the supine position. Electromyographic activity was recorded from surface electrodes. Rectus femoris action potentials in all 4 positions were significantly different. The highest action potential at the end of movement of the right leg occurred with the left leg hanging over the end of the plinth with $90^{\circ}$ knee flexion. It is therefore recommended the straight leg raising be performed with the contralateral leg flexed at $90^{\circ}$ over the end of the supporting surface to obtain a maximum rectus femoris isometric contraction.

  • PDF

CHEMOPREVENTIVE EFFECT OF GINKGO BILOBA EXTRACT: ESTROGENIC AND ANTIESTROGENIC POTENTIALS IN HUMAN BREAST CANCER CELL LINES

  • Oh, Seung-Min;Chung, Kyu-Hyuck
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.10a
    • /
    • pp.162-162
    • /
    • 2001
  • Phytoestrogens produced naturally by either plants or their seeds are three main classes of phytoestrogens: isoflavone, lignan and coumestan. Phytoestrogens can have both agonist and antagonist action of estrogenic activity. It is believed that phytoestrogens with agonist and antagonist action of estrogenic activity may reduce the risk of breast cancer, in addition to may reduce the risk of osteoporesis by therapeutic agent of breast cancer.(omitted)

  • PDF

Effects of Pine Needle Extract on Spontaneous Pacemaker Potentials in Interstitial Cells of Cajal from the Mouse Colon

  • Shahi, Pawan Kumar;Zuo, Dong Chaun;Choi, Seok;Lee, Mi Jung;Cheong, Hyeon Sook;Lim, Dong Yoon;Jun, Jae Yeoul
    • Natural Product Sciences
    • /
    • v.19 no.4
    • /
    • pp.290-296
    • /
    • 2013
  • In preliminary tests, we examined the effect of several fractions isolated from fermented pine needle extract on pacemaker potentials in cultured interstitial cells of Cajal (ICCs) from the mouse colon using a whole cell patch clamp technique. Among these fractions, Fraction 3 (F3) elicited the most powerful depolarization of membrane. Therefore, the aim of the present study was to investigate the effect of F3 obtained from fermented extract of Pinus densiflora needle on pacemaker potentials in ICCs and to establish its mechanism of action. Colonic ICCs generated spontaneous periodic pacemaker potentials in the current-clamp mode. F3 depolarized the membrane and decreased the frequency and amplitude of pacemaker potentials in a dose-dependent fashion. The F3-induced effects on pacemaker potentials were blocked by methoctramine, a muscarinic $M_2$ receptor antagonist, and by glycopyrrolate, a muscarinic $M_3$ receptor antagonist. The F3-induced effects on pacemaker potentials were blocked by external $Na^+$-free solution and by flufenamic acid, a non-selective cation channel blocker, as well as by the removal of external $Ca^{2+}$ and in the presence of thapsigargin, a $Ca^{2+}$-ATPase inhibitor in the endoplasmic reticulum. Taken together, these results suggest that F3 of pine needle extract modulates the pacemaker activity of colonic ICCs by the activation of non-selective cation channels via muscarinic $M_2$ and $M_3$ receptors. And external $Ca^{2+}$ influx and intracellular $Ca^{2+}$ release are involved in F3 actions on ICCs.

The Mechanism of Action of Ghrelin and Motilin in the Pacemaker Potentials of Interstitial Cells of Cajal from the Murine Small Intestine

  • Kim, Jeong Nam;Kim, Byung Joo
    • Molecules and Cells
    • /
    • v.42 no.6
    • /
    • pp.470-479
    • /
    • 2019
  • Interstitial cells of Cajal (ICCs) are pacemaker cells that exhibit periodic spontaneous depolarization in the gastrointestinal (GI) tract and generate pacemaker potentials. In this study, we investigated the effects of ghrelin and motilin on the pacemaker potentials of ICCs isolated from the mouse small intestine. Using the whole-cell patch-clamp configuration, we demonstrated that ghrelin depolarized pacemaker potentials of cultured ICCs in a dose-dependent manner. The ghrelin receptor antagonist [D-Lys] GHRP-6 completely inhibited this ghrelin-induced depolarization. Intracellular guanosine 5'-diphosphate-${\beta}$-S and pre-treatment with $Ca^{2+}$-free solution or thapsigargin also blocked the ghrelin-induced depolarization. To investigate the involvement of inositol triphosphate ($IP_3$), Rho kinase, and protein kinase C (PKC) in ghrelin-mediated pacemaker potential depolarization of ICCs, we used the $IP_3$ receptor inhibitors 2-aminoethoxydiphenyl borate and xestospongin C, the Rho kinase inhibitor Y-27632, and the PKC inhibitors staurosporine, Go6976, and rottlerin. All inhibitors except rottlerin blocked the ghrelin-induced pacemaker potential depolarization of ICCs. In addition, motilin depolarized the pacemaker potentials of ICCs in a similar dose-dependent manner as ghrelin, and this was also completely inhibited by [D-Lys] GHRP-6. These results suggest that ghrelin induced the pacemaker potential depolarization through the ghrelin receptor in a G protein-, $IP_3$-, Rho kinase-, and PKC-dependent manner via intracellular and extracellular $Ca^{2+}$ regulation. In addition, motilin was able to depolarize the pacemaker potentials of ICCs through the ghrelin receptor. Therefore, ghrelin and its receptor may modulate GI motility by acting on ICCs in the murine small intestine.

Effects of Angiotensin II on Isolated Cardiac Muscle and Aortic Strips in Rabbit (안지오텐신 II의 적출심근 및 대동맥 평활근에 대한 작용기전)

  • Kim, Kyu-Chan;Kim, Ki-Whan;Earm, Yung-E
    • The Korean Journal of Physiology
    • /
    • v.17 no.1
    • /
    • pp.45-54
    • /
    • 1983
  • Contractile responses of myocardium and vascular smooth muscle to angiotensin II were studied in isolated rabbit papillary muscles and aortic helical strips, with respect to the sensitivity and the mechanism of action. All experiments were performed in $HCO-_3\;-buffered Tyrode solution which was aerated with $3%\;CO_2-97%\;O_2$ and kept pH 7.35 at $35^{\circ}C$. Action potentials were measured by conventional microelectrode technique in the papillary muscles. Helical strips of vascular smooth muscle were prepared from the descending thoracic aorta of the rabbit. Angiotensin II elicited a positive inotropic effect in doses from $10^{-8}$ to $10^{-6}\;M$, and this effect was dose-dependent and characterized by a symmetrical increase of maximum dP/dt during contraction and relaxation phase. Slow responses (or slow action potentials) were induced by A. II $(10^{-6}\;M)$ in the papillary muscle hypopolarized by 27 mM $K^+$. These A. II-induced slow action potentials were eliminated by verapamil (2 mg/l), but not affected by propranolol $(10^{-5}\;M)$. In aortic helical strips, contractile force was increased dose-dependently in the range of $10^{-10}{\sim}10^{-7}\;M$ A. II. $ED_{50}$ in aorta was $3{\times}10^{-9}\;M$ A. II, whereas that in paillary muscle was $2.5{\times}10^{-7}\;M$ A. II. A. II contracted vascular smooth muscle in depolarizing concentration of $K^+$ (100 mM $K^+$), and also produced a sustained contraction even in the presence of verapamil and regitine. The results of this experiment suggest that the primarily important physiological role of A. II is the action on the blood vessel, and the positive inotropic effect of A. II in papillary muscle results from the increase of slow inward $Ca^{++}$ current, and that A. II-induced contraction of aorta is independent of transmembrane potential and associated with promoting bet transmembrane $Ca^{++}\;-influx$ and the mobilization of cellular $Ca^{++}$.

  • PDF