• Title/Summary/Keyword: Actinomycetes community

Search Result 38, Processing Time 0.019 seconds

Analysis of Soil Microbial Communities Formed by Different Upland Fields in Gyeongnam Province

  • Kim, Min Keun;Ok, Yong Sik;Heo, Jae-Young;Choi, Si-Lim;Lee, Sang-Dae;Shin, Hyun-Yul;Kim, Je-Hong;Kim, Hye Ran;Lee, Young Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.2
    • /
    • pp.100-106
    • /
    • 2014
  • The present study investigated variations in soil microbial communities by fatty acid methyl ester (FAME) and the chemical properties at 24 sites of upland soils in Gyeongnam Province. The electrical conductivity of the soil under potato cultivation was significantly higher than those of the red pepper and soybean soils (p < 0.05). The gram-negative bacteria community in potato soil was significantly lower than those in the garlic and soybean soils (p < 0.05). The communities of actinomycetes and arbuscular mycorrhizal fungi in the red pepper soil were significantly higher than those in the potato soil (p < 0.05). In addition, the cy17:0 to 16:$1{\omega}7c$ ratio was significantly lower in red pepper, soybean, and garlic soils compared with potato soil, indicating that microbial stress decreased. Consequently, differences in soil microbial community were highly associated with cultivated crop species, and this might be resulted from the difference in soil chemical properties.

Assessment of Soil Microbial Communities in Carotenoid-Biofortified Rice Ecosystem

  • Sohn, Soo-In;Oh, Young-Ju;Kim, Byung-Yong;Lee, Bumkyu;Lee, Si-Myung;Oh, Sung-Dug;Lee, Gang-Seob;Yun, Doh-Won;Cho, Hyun-Suk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.442-450
    • /
    • 2015
  • This study was conducted to investigate the effect of Psy-2A-CrtI (PAC), a genetically modified (GM) rice with enhanced ${\beta}$-carotene, on the soil microbial community. The soil used to cultivate GM rice and its wild-type, Nakdong, was analyzed for population density, denaturing gradient gel electrophoresis (DGGE), and pyrosequencing. It was found that the bacterial, fungal and actinomycetes population densities of the PAC soils were within the range of those of the non-GM rice cultivar, Nakdong. The DGGE banding patterns of the GM and non-GM soils were also similar, suggesting that the bacterial community structures were stable within a given month and were unaffected by the presence of a GM plant. The pyrosequencing result showed a temporal difference in microorganism taxon and distribution ratio, but no significant difference between GM and non-GM was found. The persistence of the transgene DNA in the plant and surrounding soil were investigated for different time periods. There were differences in the persistence within the plant depending on the gene, but they could not be detected after 5 weeks. Also the transgenes were not detected in the surrounding soil. These results indicate that soil microbial communities are unaffected by the cultivation of a PAC rice within the experimental time frame.

Effects of Electrical Conductivity on the Soil Microbial Community in a Controled Horticultural Land for Strawberry Cultivation (시설딸기재배지 토양에서 염류농도가 미생물 생태에 미치는 영향)

  • Lee, Young-Han;Ahn, Byung-Koo;Sonn, Yeon-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.830-835
    • /
    • 2011
  • Total soil microbial activities have great impact to soil management for organic farming. This study was evaluated in the soil microbial community by fatty acid methyl ester (FAME) in a controlled horticultural field for strawberry organic farm. Experimental plots were prepared with a high level of soil electrical conductivity (EC) and a optimum level of soil EC. Soil microbial biomasses and communities of total bacteria, Gram-negative bacteria, Gram-positive bacteria, actinomycetes, fungi, and arbuscular mycorrhizal fungi in the high level of soil EC were significantly larger than those in the optimum level of soil EC. Lower ratios of cy17:0 to 16:$1{\omega}7c$ and cy19:0 to 18:$1{\omega}7c$ were found in the optimum level of soil EC than those in the high level of soil EC, indicating that microbial stress decreased.

Impacts of Soil Texture on Microbial Community from Paddy Soils in Gyeongnam Province (경남지역 논 토양 토성에 따른 미생물 군집 변화)

  • Lee, Young-Han;Ahn, Byung-Koo;Lee, Seong-Tae;Shin, Min-A;Kim, Eun-Seok;Song, Won-Doo;Sonn, Yeon-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1176-1180
    • /
    • 2011
  • The present study evaluated the soil microbial communities by fatty acid methyl ester (FAME) method in paddy soils at 11 sites for silt loam, 4 sites for sandy loam, and 5 sites for loam in Gyeongnam Province. The FAME content of fungi in loam ($76nmol\;g^{-1}$) was higher than that of in sandy loam ($45nmol\;g^{-1}$). Sandy loam had significantly lower ratio of cy19:0 to 18:$1{\omega}7c$ compared with that of silt loam (p<0.05), indicating that microbial stress decreased. In addition, actinomycetes community of loam was higher than that of sandy loam.

Effects of Cover Plants on Soil Microbial Community in Organic Apple Orchards (피복작물이 유기 사과과원 토양미생물상에 미치는 영향)

  • Oh, Young-Ju;Kang, Seok-Boem;Song, Yang-Ik;Choi, Jin-Ho;Paik, Woen-Ki
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.822-828
    • /
    • 2012
  • Organic fruit production has increased due to consumer's interest and government's political support for environmentally-friendly agriculture. The aim of this study was to investigate the effects of cover plants on soil microbial community and establish the fruit cultivation method by organic farming techniques. Cover plants used as an organic nutrient source in an apple orchard were rye and barley, the Gramineae and red clover and hairy vetch, the Leguminosae. In the effects of cover plants on the soil chemical characteristics, the soil pH values were higher than that of conventional organic pear orchard. The content of P showed no significant difference between control and cover plant plots. Organic matter level was similar in control and Gramineae cover plant plots, while organic matter content in cover plants belong to Leguminosae was lower than that of control plot. K content was lower in the plots treated with rye and red clover than control plot, while K content in hairy vetch treated plot was higher than control plot. Ca content was lower in control plot than in cover plant treated plots. Concentrations of Mg in the plots treated with barley and hairy vetch was lower than control plot. In August rye and red clover covered soil showed higher bacterial community density than that of control soil and barley treated soil showed highest Actinomycetes community density among treatments. Barley and hairy vetch soils showed higher level of fungi community density than that of control soil in August. In pyrosequencing analysis barley treated soil showed highest distribution ratio of Actinomycetes among treatment. Our findings might be used as basic data for choosing cover plant with effective organic matter decomposition and nutrition supply capacity.

Pseudomonas putida Strain 17 Isolated from Replant Soil Promotes Tomato Growth and Inhibits Conidial Germination of Soilborne Plant Pathogens

  • Lee, Sang-Woo;Ahn, Il-Pyung;Lim, Jae-Wook;Lee, Yong-Hwan
    • The Plant Pathology Journal
    • /
    • v.21 no.3
    • /
    • pp.244-251
    • /
    • 2005
  • The induction of growth promotion on numerous crops by rhizobacteria is a well documented phenomenon. In case of tomato (Lycopersicon esculentum), fruit yield is higher in replant soil than that in fresh soil. To investigate what kind of rhizobacterium is involved, microbial community in rhizosphere and on rhizoplane of tomato plants from each soil was analyzed by dilution plating on selective media. Many Gram-negative bacteria and actinomycetes were isolated from tomato in replant soil. One Gram-negative rhizobacterium isolated was identified as Pseudomonas putida based on its biochemical characteristics, fatty acid methyl ester analysis and 16S rDNA sequence. This bacterium designated strain 17 inhibited the growth of Pseudomonas corrugata, and increased growth of tomato seedlings. In addition, its culture filtrate inhibited conidial germination of plant-pathogenic fungi such as Fusarium oxysporum f. sp. radicis-lycopersici, F. oxysporum f. sp. cucumerinum, and Nectria radicicola. Scanning electron microscopy revealed strain 17 colonized and persisted on the epidermal surfaces of tomato radicles and roots. These results suggest that P. putida strain 17 may serve as a biological control agent to suppress multiple soil-borne diseases for tomato plants. Increased microbial populations that suppress deleterious microorganisms including pathogens could be one of the major factors in increased tomato yield in replant soil.

The Distribution of Cellular Slime Molds in Forests of Seoul Area and Relationship between Cellular Slime Molds and Soil Microorganisms (서울지역 삼림에서 세포성 점균의 분포와 토양 미생물과의 관계)

  • 홍정림;장남기
    • Asian Journal of Turfgrass Science
    • /
    • v.10 no.3
    • /
    • pp.247-262
    • /
    • 1996
  • In this study, the distribution of dictyostelid cellular slime molds was investigated from F, H and $A_1$ horizon of pinus, oak forests in Mt. Puk'an, Mt. Nam and Mt. Kwanak. The relationship of cellular slime molds with other soil microorganisms and abiotic factors were analyzed. The six species were isolated as follows: Polysphondlium pallidurn, Dictyostelium purpureum, D. mucoroides, D. crassicaule, D. capitatum, D. implicatum. The dominant species in pinus forests was P. pallidum, and in oak forests it was D. macro ides. In Mt. Nam, D. mucoroides and P. pallidum were isolated at only oak forest. The Correlations of slime mold abundance with bacteria were significant. Even though positive correlations of cellular slime molds with actinomycetes or fungi were not significant, correlations between soil microorganisms were analyzed. Correlation coefficients were high in Mt. Kwanak(r=0.5921) and Mt. Nam(r=0.7243) at significant level P<0.01. There were significant correlations between total slime molds and abiotic factors. It supports that cellular slime molds are limited by foods in nature. In low level of pH, water content and organic matter, that community diversity is more affected by bacteria whose organic degradation capacity is regulated by interactions of soil microorgaisms. Key words: Cellular slime molds, Soil microorganisms, Correlations, Abiotic factors.

  • PDF

Contents of Soil Microbial Phospholipid Fatty Acids as Affected by Continuous Cropping of Pepper under Upland (노지 고추 연작 토양의 미생물 인지질 지방산 함량)

  • Hwang, Jae-Moon;Park, Kee-Choon;Kim, Su-Jung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.1012-1017
    • /
    • 2010
  • This study was carried out to investigate the effect of continuous cropping of pepper on soil microbial phospholipid fatty acids (PLFAs) under upland applied without any pesticides and chemical herbicides from 2000 to 2009. Microbial PLFAs were analysed from soils sampled in 2009. Soil microbial diversities showed PLFAs of monoplanting of pepper were distinct from those of monoplanting of garlic and interplanting of garlic and pepper by principle component 2 (PC2). Furthermore, soil microbial activity of monoplanting of pepper significantly decreased PLFAs representing as VAM-fungi, whereas it significantly increased in actinomycetes and saturated/monounsaturated PLFAs' ratio. The results drove continuous cropping of pepper would vary the microbial community and their specific activity. Soil microbial activities in continuous cropping system would depend on crop root systems.

Assessment of Microbial Community in Paddy Soils Cultivated with Bt and Nakdong Rice (Bt 벼의 토양미생물상 영향 비교평가)

  • Sohn, Soo-In;Ahn, Byung-Ohg;Chi, Hee-Youn;Cho, Byung-Kwan;Cho, Min-Seok;Shin, Kong Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.829-835
    • /
    • 2012
  • The cultivation of genetically modified (GM) crops has increased due to their economic and agronomic advantages. Before commercialization of GM crops, however, we must assess the potential risks of GM crops on human health and environment. The aim of this study was to investigate the possible impact of Bt rice on the soil microbial community. Microbial communities were isolated from the rhizosphere soil cultivated with Bt rice and Nakdong, parental cultivar and were subjected to be analyzed using both culture-dependent and molecular methods. The total counts of bacteria, fungi, and actinomycetes in the rhizosphere of transgenic and conventional rice were not significantly different. Denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified 16S rRNA genes revealed that the bacterial community structures during cultural periods were very similar each other. Analysis of dominant isolates in the rhizosphere cultivated with Bt and Nakdong rice showed that the dominant isolates from the soil of Bt rice and Nakdong belonged to the Proteobacteria, Cloroflexi, Actinobacteria, Firmicutes, and Acidobacteria. These results indicate that the Bt rice has no significant impact on the soil microbial communities during cultivation period. Further study remains to be investigated whether the residue of Bt rice effect on the soil environment.

Molecular Analysis of Microbial Community in Soils Cultivating Bt Chinese Cabbage (분자생물학적 분석을 통한 Bt 배추의 토양미생물상 영향 비교평가)

  • Sohn, Soo-In;Oh, Young-Ju;Oh, Sung-Dug;Kim, Min-Kyung;Ryu, Tae-Hoon;Lee, Ki-Jong;Suh, Seok-Choel;Baek, Hyeong-Jin;Park, Jong-Sug
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.3
    • /
    • pp.293-299
    • /
    • 2010
  • The aim of this study was to investigate the possible impact of Bt Chinese cabbage on the soil microbial community. Microbial communities were isolated from the rhizosphere of one Bt Chinese cabbage variety and four varieties of conventional ones and were subjected to be analyzed using both culture-dependent and molecular methods. The total counts of bacteria, fungi, and actinomycetes in the rhizosphere of transgenic and conventional Chinese cabbages were observed to have an insignificant difference. Denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified 16S rRNA genes revealed that the bacterial community structures were very similar to each other and this genetic stability of microbial communities was maintained throughout the culture periods. Analysis of dominant isolates in the rhizosphere of transgenic and conventional Chinese cabbages showed that the dominant isolates from the soil of transgenic Chinese cabbage belonged to the Bacilli and Alphaproteobacteria, while the dominant isolates from the soil of conventional cabbage belonged to the Holophagae and Planctomycetacia, respectively. These results indicate that the Bt transgenic cabbage has no significant impact on the soil microbial communities.