DOI QR코드

DOI QR Code

Assessment of Microbial Community in Paddy Soils Cultivated with Bt and Nakdong Rice

Bt 벼의 토양미생물상 영향 비교평가

  • Received : 2012.09.26
  • Accepted : 2012.10.12
  • Published : 2012.10.30

Abstract

The cultivation of genetically modified (GM) crops has increased due to their economic and agronomic advantages. Before commercialization of GM crops, however, we must assess the potential risks of GM crops on human health and environment. The aim of this study was to investigate the possible impact of Bt rice on the soil microbial community. Microbial communities were isolated from the rhizosphere soil cultivated with Bt rice and Nakdong, parental cultivar and were subjected to be analyzed using both culture-dependent and molecular methods. The total counts of bacteria, fungi, and actinomycetes in the rhizosphere of transgenic and conventional rice were not significantly different. Denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified 16S rRNA genes revealed that the bacterial community structures during cultural periods were very similar each other. Analysis of dominant isolates in the rhizosphere cultivated with Bt and Nakdong rice showed that the dominant isolates from the soil of Bt rice and Nakdong belonged to the Proteobacteria, Cloroflexi, Actinobacteria, Firmicutes, and Acidobacteria. These results indicate that the Bt rice has no significant impact on the soil microbial communities during cultivation period. Further study remains to be investigated whether the residue of Bt rice effect on the soil environment.

경제적 및 농업적 장점은 유전자 변형 작물 재배면적의 증가를 가져왔다. 그러나 유전자 변형 작물의 상업적 재배전에 유전자 변형 작물의 인간건강 및 환경에 미칠 잠재적 위해성에 대한 면밀한 검토가 필수적이다. 본 연구에서는 Bt벼의 토양미생물 군집에 미치는 영향을 조사하였다. 토양화학성분을 분석한 결과, Bt벼와 낙동벼 근권토양 간 화학성분의 유의성 있는 차이는 없는 것으로 조사되었다. 재배전, 재배초기, 최고분얼기의 토양미생물 군집밀도를 조사했을 때 Bt벼 근권토양의 세균, 방선균, 진균 군집밀도는 낙동벼와 유사한 수준으로 나타났다. 시기별 DGGE 분석결과 Bt 벼 근권토양 전체미생물상은 낙동벼와 차이가 없는 것으로 조사되었다. Pyrosequencing을 통한 Bt벼와 낙동벼의 미생물 군집조성을 조사한 결과 주요 미생물상 분포에 있어서도 매우 유사한 양상을 나타내었다. 위의 결과들을 종합해볼때 Bt 재배에 따른 토양미생물상에 미치는 영향은 미미한 것으로 사료된다. 수확 후 벼 잔존물이 토양환경에 미치는 영향에 대해서는 좀 더 연구가 진행되어야 할 것이다.

Keywords

References

  1. Bashir, K., T. Husnain, T. Fatima, Z. Latif, S.A. Mehdi, and S. Riazuddin. 2004. Field evaluation and risk assessment of transgenic indica basmati rice. Mol. Breed. 13:301-312. https://doi.org/10.1023/B:MOLB.0000034078.54872.25
  2. Betz, F. S., B.G. Hammond, and R. L. Fuchs. 2000. Safety and advantages of Bacillus thringiensis-protected plants to control insect pests. Regul. Toxicol. Pharmacol. 32: 156-173. https://doi.org/10.1006/rtph.2000.1426
  3. Carpenter, J. E. 2010. Peer-reviewed surveys indicate positive impact of commercialized GM crops. Nat. Biotechnol. 28: 319-321. https://doi.org/10.1038/nbt0410-319
  4. Clark, M. S., M. S. Smith, and J. W. Doran. 1998. Changes in soil chemical properties resulting from organic and low-input farming practices. Agron. J. 90: 662-671. https://doi.org/10.2134/agronj1998.00021962009000050016x
  5. de Vries, J. and W. Wackernagel. 2004. Microbial horizontal gene transfer and the DNA release from transgenic crop plants. Plant Soil. 266: 91-104.
  6. Duformantel, N., G. Tissot, F. Goutorbe, F. Garcon, C. Muhr, S. Jansens, B. Pelissier, G. Peltier, and M. Dubald. 2005. Generation and analysis of soybean plastid transformants expressing Bacillus thuringiensis Cry1Ab protoxin. Plant Mol. Biol. 58: 659-668. https://doi.org/10.1007/s11103-005-7405-3
  7. Estruch, J. J., G. W. Warren, M. A. Mullins, G. J. Nye, J. A. Craig, and M. G. Koziel. 1996. Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a spectrum of activities against lepidopteran insect. Proc. Natl. Acad. Sci. USA. 93: 5389-5394. https://doi.org/10.1073/pnas.93.11.5389
  8. He, K., Z. Wang, S. Bai, L. Zheng, Y. Wang, and H. Cui. 2006. Efficacy of transgenic Bt cotton resistance to the Asian corn borer (Lepidoptera: Crambidae). Crop Prot. 25: 167-173. https://doi.org/10.1016/j.cropro.2005.04.003
  9. Icoz, I., D. Saxena, D.A. Andow, C. Zwahlen, and G. Stotzky. 2008. Microbial populations and enzyme activities in soil in situ under transgenic corn expressing cry proteins from Bacillus thuringiensis. J. Environ. Qual. 37(2), 647-662. https://doi.org/10.2134/jeq2007.0352
  10. Icoz, I. and G. Stotzky. 2008. Fate and effects of insect-resistant Bt crops in soil ecosystems. Soil Biol. Biochem. 40:559-586. https://doi.org/10.1016/j.soilbio.2007.11.002
  11. James, C. 2011. Global status of commercialized biotech/GM crops: 2011. ISAAA Briefs No. 43, Ithaka, NY.
  12. Jung, B. G., G. H. Jo, E. S. Yun, J. H. Yoon, and Y. H. Kim. 1998. Monitoring on chemical properties of bench marked paddy soils in Korea. Korean J. Soil Sci. Fert. 31(3) 246-252.
  13. Kim, E. S., S. W. Hong, and K. S. Chung. 2011. Comparative analysis of bacterial diversity in the intestinal tract of earthworm (Eisenia fetida) using DGGE and pyrosequencing. Korean J. Microbiol. Biotechnol. 39(4): 374-381
  14. Kim E. H., S. C. Suh, B. S. Park, K. S. Shin, S. J. Kweon, E. J. Han, S. H. Park, Y. S. Kim, and J. K. Kim. 2009. Chloroplast-targeted expression of synthetic cry1Ac in transgenic rice as an alternative strategy for increased pest protection. Planta. 230: 397-405. https://doi.org/10.1007/s00425-009-0955-x
  15. Kim, Y.J. and K.S. Whang. 2007. Phylogenetic characteristics of viable but nonculturable bacterial populations in a pine mushroom (Tricholloma matcutake) forest soil. The Korean J. Microbiol. 43: 201-209.
  16. Koziel, M. G., G. L. Beland, C. Bowman, N. B. Carozzi, R. Crenshaw, L. Crossland, J. Dawson, N. Desai, M. Hill, S. Kadwell, K. Lauris, K. Lewis, D. Maddox, K. McPherson, M. R. Meghji, E. Merlin, R. Rhodes, G. W. Warren, M. Wright, and S. V. Evola. 1993. Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Bio. Technol. 11: 194-200. https://doi.org/10.1038/nbt0293-194
  17. Kumar, H. and V. Kumar. 2004. Tomato expressing Cry1A(b) insecticidal protein from Bacillus thuringiensis protected against tomato fruit borer, Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) damage in the laboratory, greenhouse and field. Crop Protect. 23:135-139. https://doi.org/10.1016/j.cropro.2003.08.006
  18. Lee, S. H., C. G. Kim, and H. J. Kang. 2011. Temporal dynamics of bacterial and fungal communities in a genetically modified(GM) rice ecosystem. Microb. Ecol. 61: 646-659. https://doi.org/10.1007/s00248-010-9776-5
  19. Liu, W., H. H. Lu, W. Wu, Q. K. Wei, Y. X. Chen, and J. E. Thies. 2008. Transgenic Bt rice does not affect enzyme activities and microbial composition in the rhizosphere during crop development. Soil Biol. Biochem. 40: 475-486. https://doi.org/10.1016/j.soilbio.2007.09.017
  20. Lu, H., W. Wu, Y Chen, H. Wang, M. Devare, and J. E. Thies. 2010. Soil microbial community responses to Bt transgenic rice residue decomposition in a paddy field. J. Soils Sediments. 10:1598-1605. https://doi.org/10.1007/s11368-010-0264-9
  21. Maqbool, S. B., S. Riazuddin, N. T. Loc, A. M. R. Gatehouse, J. A. Gatehouse, and P. Christou 2001. Expression of multiple insecticidal genes confers broad resistance against a range of different rice pests. Mol. Breed. 7: 85-93. https://doi.org/10.1023/A:1009644712157
  22. Meissle, M., E. Vojtech, and G. M. Poppy. 2005. Effects of Bt maize-fed prey on the generalist predator Poecilus cupreus L. (Coleoptera: Carabidae). Transgenic Res. 14:123-132. https://doi.org/10.1007/s11248-004-6458-4
  23. Mendelsohn, M., J. Kough, Z. Vaituzis, and K. Matthews. 2003. Are Bt crops safe? Nature Biotech. 21: 1003-1009. https://doi.org/10.1038/nbt0903-1003
  24. Nap, J.P., J. Bijvoet, and W. J. Stiekema. 1992, Biosafety of kanamycin-resistant transgenic plants. Transgenic Res. 1: 239-249. https://doi.org/10.1007/BF02525165
  25. NAAS (National Academy of Agricultural Science). 2000. Analysis method of soil and plant: Physics, chemistry and microorganism. RDA, Korea.
  26. Odum. 1998. Fundamental of ecology. Gadjah Mada University Press. Yogyakarta. 800p.
  27. Perlak, F. J., R. W. Deaton, T. A. Amstrong, R. L. Fuchs, S. R. Sims, J. T. Greenplate, and D. A. Fischhoff. 1990. Insect resistant cotton plants. Bio. Technol. 8: 939-943. https://doi.org/10.1038/nbt1090-939
  28. Raney, T. 2006. Economic impact of transgenic crops in developing contries. Curr. Opin. Plant Biol. 17: 1-5.
  29. Raybould, A. and D. Vlachos. 2011. Non-target organism effects rests on Vip3A and their application to the ecological risk assessment for cultivation of MIR162 maize. Transgenic Res. 20: 599-611. https://doi.org/10.1007/s11248-010-9442-1
  30. Shu, Q., G. Ye, H. Cui, X. Cheng, Y. Xiang, D. Wu, M. Gao, Y. Xia, C. Hu, R. Sardana, and I. Altosaar. 2000. Transgenic rice plants with a synthetic cry1Ab gene Bacillus thuringiensis were highly resistant to eight lepidopteran rice pest species. Mol. Breed. 6: 433-439. https://doi.org/10.1023/A:1009658024114
  31. Sohn, S. I., Y. J. Oh, S. D. Oh, M. K. Kim, T. H. Ryu, K. J. Lee, S. C. Suh, H. J. Baek, and J. S. Park. 2010. Molecular analysis of microbial community in soils cultivating Bt Chinese cabbage. Korean J. Environ. Agric. 29(3): 293-299. https://doi.org/10.5338/KJEA.2010.29.3.293
  32. Stewart, C. N., M. D. Jr., Halfhill, and S. I. Warwick. 2003. Transgene introgression from genetically modified crops to their wild relatives. Nat. Rev. Gen. 4: 806-817. https://doi.org/10.1038/nrg1179
  33. Tu, J., G. Zhang, K. Datta, C. Xu, Y. He, Q. Zhang, G. S. Khush, and S. K. Datta. 2000. Field performance of transgenic elite commercial hybrid rice expressing Bacillus thuringiensis $\delta$-endotoxin. Nat. Biotechnol. 18:1101-1104. https://doi.org/10.1038/80310
  34. Wei, M., F. Tan, H. Zhu, K. Cheng, X. Wu, J. Wang, K. Zhao, and X. Tang. 2012. Impact of Bt-transgenic rice (SHK601) on soil ecosystems in the rhizosphere during crop development. Plant Soil Environ. 58(5): 217-223.
  35. Ye, G. Y., Q. Y. Shu, H. W. Yao, H. R. Cui, X. Y. Cheng, C. Hu, Y. W. Xia, M. W. Gao, and I. Altosaar. 2001. Field evaluation of resistance of transgenic rice containing a synthetic cry1Ab gene from Bacillus thuringiensis Berliner to two stem borers. J. Econ. Entomol. 94: 271-276. https://doi.org/10.1603/0022-0493-94.1.271
  36. Ye, G. Y., H. W. Yao, Q. Y. Shu, X. Cheng, C. Hu, Y. W. Xia, M. W. Gao, and I. Altosaar. 2003. High levels of stable resistance in transgenic rice with a cry1Ab gene from Bacillus thuringiensis Berliner to rice leaffilder, Cnaphalocrocis medinalis (Guenee) under field conditions. Crop Protect. 22: 171-178. https://doi.org/10.1016/S0261-2194(02)00142-4

Cited by

  1. Effects of Bt Cabbage (Brassica oleracea) on the Host Preference and Performance of the Green Peach Aphid, Myzus persicae Sulzer (Hemiptera: Aphididae) vol.53, pp.2, 2014, https://doi.org/10.5656/KSAE.2014.02.1.084
  2. Assessment of Substantial Equivalence and Environmental Risk for Event Selection of Genetically Modified Chrysanthemum vol.32, pp.4, 2014, https://doi.org/10.7235/hort.2014.13149