Browse > Article
http://dx.doi.org/10.7745/KJSSF.2012.45.5.829

Assessment of Microbial Community in Paddy Soils Cultivated with Bt and Nakdong Rice  

Sohn, Soo-In (National Academy of Agricultural Science)
Ahn, Byung-Ohg (National Academy of Agricultural Science)
Chi, Hee-Youn (Chungnam National University)
Cho, Byung-Kwan (Smateome Co., Ltd.)
Cho, Min-Seok (Chungnam National University)
Shin, Kong Sik (National Academy of Agricultural Science)
Publication Information
Korean Journal of Soil Science and Fertilizer / v.45, no.5, 2012 , pp. 829-835 More about this Journal
Abstract
The cultivation of genetically modified (GM) crops has increased due to their economic and agronomic advantages. Before commercialization of GM crops, however, we must assess the potential risks of GM crops on human health and environment. The aim of this study was to investigate the possible impact of Bt rice on the soil microbial community. Microbial communities were isolated from the rhizosphere soil cultivated with Bt rice and Nakdong, parental cultivar and were subjected to be analyzed using both culture-dependent and molecular methods. The total counts of bacteria, fungi, and actinomycetes in the rhizosphere of transgenic and conventional rice were not significantly different. Denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified 16S rRNA genes revealed that the bacterial community structures during cultural periods were very similar each other. Analysis of dominant isolates in the rhizosphere cultivated with Bt and Nakdong rice showed that the dominant isolates from the soil of Bt rice and Nakdong belonged to the Proteobacteria, Cloroflexi, Actinobacteria, Firmicutes, and Acidobacteria. These results indicate that the Bt rice has no significant impact on the soil microbial communities during cultivation period. Further study remains to be investigated whether the residue of Bt rice effect on the soil environment.
Keywords
Bt rice; Soil microbial community; 16S rDNA; pyrosequencing;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 James, C. 2011. Global status of commercialized biotech/GM crops: 2011. ISAAA Briefs No. 43, Ithaka, NY.
2 Jung, B. G., G. H. Jo, E. S. Yun, J. H. Yoon, and Y. H. Kim. 1998. Monitoring on chemical properties of bench marked paddy soils in Korea. Korean J. Soil Sci. Fert. 31(3) 246-252.
3 Kim, E. S., S. W. Hong, and K. S. Chung. 2011. Comparative analysis of bacterial diversity in the intestinal tract of earthworm (Eisenia fetida) using DGGE and pyrosequencing. Korean J. Microbiol. Biotechnol. 39(4): 374-381   과학기술학회마을
4 Kim E. H., S. C. Suh, B. S. Park, K. S. Shin, S. J. Kweon, E. J. Han, S. H. Park, Y. S. Kim, and J. K. Kim. 2009. Chloroplast-targeted expression of synthetic cry1Ac in transgenic rice as an alternative strategy for increased pest protection. Planta. 230: 397-405.   DOI   ScienceOn
5 Bashir, K., T. Husnain, T. Fatima, Z. Latif, S.A. Mehdi, and S. Riazuddin. 2004. Field evaluation and risk assessment of transgenic indica basmati rice. Mol. Breed. 13:301-312.   DOI   ScienceOn
6 Betz, F. S., B.G. Hammond, and R. L. Fuchs. 2000. Safety and advantages of Bacillus thringiensis-protected plants to control insect pests. Regul. Toxicol. Pharmacol. 32: 156-173.   DOI   ScienceOn
7 Carpenter, J. E. 2010. Peer-reviewed surveys indicate positive impact of commercialized GM crops. Nat. Biotechnol. 28: 319-321.   DOI
8 Clark, M. S., M. S. Smith, and J. W. Doran. 1998. Changes in soil chemical properties resulting from organic and low-input farming practices. Agron. J. 90: 662-671.   DOI
9 de Vries, J. and W. Wackernagel. 2004. Microbial horizontal gene transfer and the DNA release from transgenic crop plants. Plant Soil. 266: 91-104.
10 Ye, G. Y., Q. Y. Shu, H. W. Yao, H. R. Cui, X. Y. Cheng, C. Hu, Y. W. Xia, M. W. Gao, and I. Altosaar. 2001. Field evaluation of resistance of transgenic rice containing a synthetic cry1Ab gene from Bacillus thuringiensis Berliner to two stem borers. J. Econ. Entomol. 94: 271-276.   DOI
11 Ye, G. Y., H. W. Yao, Q. Y. Shu, X. Cheng, C. Hu, Y. W. Xia, M. W. Gao, and I. Altosaar. 2003. High levels of stable resistance in transgenic rice with a cry1Ab gene from Bacillus thuringiensis Berliner to rice leaffilder, Cnaphalocrocis medinalis (Guenee) under field conditions. Crop Protect. 22: 171-178.   DOI   ScienceOn
12 Sohn, S. I., Y. J. Oh, S. D. Oh, M. K. Kim, T. H. Ryu, K. J. Lee, S. C. Suh, H. J. Baek, and J. S. Park. 2010. Molecular analysis of microbial community in soils cultivating Bt Chinese cabbage. Korean J. Environ. Agric. 29(3): 293-299.   과학기술학회마을   DOI
13 Tu, J., G. Zhang, K. Datta, C. Xu, Y. He, Q. Zhang, G. S. Khush, and S. K. Datta. 2000. Field performance of transgenic elite commercial hybrid rice expressing Bacillus thuringiensis $\delta$-endotoxin. Nat. Biotechnol. 18:1101-1104.   DOI
14 Wei, M., F. Tan, H. Zhu, K. Cheng, X. Wu, J. Wang, K. Zhao, and X. Tang. 2012. Impact of Bt-transgenic rice (SHK601) on soil ecosystems in the rhizosphere during crop development. Plant Soil Environ. 58(5): 217-223.
15 Odum. 1998. Fundamental of ecology. Gadjah Mada University Press. Yogyakarta. 800p.
16 Perlak, F. J., R. W. Deaton, T. A. Amstrong, R. L. Fuchs, S. R. Sims, J. T. Greenplate, and D. A. Fischhoff. 1990. Insect resistant cotton plants. Bio. Technol. 8: 939-943.   DOI
17 Raney, T. 2006. Economic impact of transgenic crops in developing contries. Curr. Opin. Plant Biol. 17: 1-5.
18 Raybould, A. and D. Vlachos. 2011. Non-target organism effects rests on Vip3A and their application to the ecological risk assessment for cultivation of MIR162 maize. Transgenic Res. 20: 599-611.   DOI
19 Shu, Q., G. Ye, H. Cui, X. Cheng, Y. Xiang, D. Wu, M. Gao, Y. Xia, C. Hu, R. Sardana, and I. Altosaar. 2000. Transgenic rice plants with a synthetic cry1Ab gene Bacillus thuringiensis were highly resistant to eight lepidopteran rice pest species. Mol. Breed. 6: 433-439.   DOI
20 Stewart, C. N., M. D. Jr., Halfhill, and S. I. Warwick. 2003. Transgene introgression from genetically modified crops to their wild relatives. Nat. Rev. Gen. 4: 806-817.   DOI
21 Mendelsohn, M., J. Kough, Z. Vaituzis, and K. Matthews. 2003. Are Bt crops safe? Nature Biotech. 21: 1003-1009.   DOI
22 Lu, H., W. Wu, Y Chen, H. Wang, M. Devare, and J. E. Thies. 2010. Soil microbial community responses to Bt transgenic rice residue decomposition in a paddy field. J. Soils Sediments. 10:1598-1605.   DOI
23 Maqbool, S. B., S. Riazuddin, N. T. Loc, A. M. R. Gatehouse, J. A. Gatehouse, and P. Christou 2001. Expression of multiple insecticidal genes confers broad resistance against a range of different rice pests. Mol. Breed. 7: 85-93.   DOI   ScienceOn
24 Meissle, M., E. Vojtech, and G. M. Poppy. 2005. Effects of Bt maize-fed prey on the generalist predator Poecilus cupreus L. (Coleoptera: Carabidae). Transgenic Res. 14:123-132.   DOI
25 Nap, J.P., J. Bijvoet, and W. J. Stiekema. 1992, Biosafety of kanamycin-resistant transgenic plants. Transgenic Res. 1: 239-249.   DOI
26 NAAS (National Academy of Agricultural Science). 2000. Analysis method of soil and plant: Physics, chemistry and microorganism. RDA, Korea.
27 Kim, Y.J. and K.S. Whang. 2007. Phylogenetic characteristics of viable but nonculturable bacterial populations in a pine mushroom (Tricholloma matcutake) forest soil. The Korean J. Microbiol. 43: 201-209.   과학기술학회마을
28 Koziel, M. G., G. L. Beland, C. Bowman, N. B. Carozzi, R. Crenshaw, L. Crossland, J. Dawson, N. Desai, M. Hill, S. Kadwell, K. Lauris, K. Lewis, D. Maddox, K. McPherson, M. R. Meghji, E. Merlin, R. Rhodes, G. W. Warren, M. Wright, and S. V. Evola. 1993. Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Bio. Technol. 11: 194-200.   DOI
29 Lee, S. H., C. G. Kim, and H. J. Kang. 2011. Temporal dynamics of bacterial and fungal communities in a genetically modified(GM) rice ecosystem. Microb. Ecol. 61: 646-659.   DOI
30 Kumar, H. and V. Kumar. 2004. Tomato expressing Cry1A(b) insecticidal protein from Bacillus thuringiensis protected against tomato fruit borer, Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) damage in the laboratory, greenhouse and field. Crop Protect. 23:135-139.   DOI
31 Liu, W., H. H. Lu, W. Wu, Q. K. Wei, Y. X. Chen, and J. E. Thies. 2008. Transgenic Bt rice does not affect enzyme activities and microbial composition in the rhizosphere during crop development. Soil Biol. Biochem. 40: 475-486.   DOI
32 Duformantel, N., G. Tissot, F. Goutorbe, F. Garcon, C. Muhr, S. Jansens, B. Pelissier, G. Peltier, and M. Dubald. 2005. Generation and analysis of soybean plastid transformants expressing Bacillus thuringiensis Cry1Ab protoxin. Plant Mol. Biol. 58: 659-668.   DOI
33 Estruch, J. J., G. W. Warren, M. A. Mullins, G. J. Nye, J. A. Craig, and M. G. Koziel. 1996. Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a spectrum of activities against lepidopteran insect. Proc. Natl. Acad. Sci. USA. 93: 5389-5394.   DOI
34 He, K., Z. Wang, S. Bai, L. Zheng, Y. Wang, and H. Cui. 2006. Efficacy of transgenic Bt cotton resistance to the Asian corn borer (Lepidoptera: Crambidae). Crop Prot. 25: 167-173.   DOI
35 Icoz, I., D. Saxena, D.A. Andow, C. Zwahlen, and G. Stotzky. 2008. Microbial populations and enzyme activities in soil in situ under transgenic corn expressing cry proteins from Bacillus thuringiensis. J. Environ. Qual. 37(2), 647-662.   DOI
36 Icoz, I. and G. Stotzky. 2008. Fate and effects of insect-resistant Bt crops in soil ecosystems. Soil Biol. Biochem. 40:559-586.   DOI