Browse > Article
http://dx.doi.org/10.7745/KJSSF.2012.45.5.822

Effects of Cover Plants on Soil Microbial Community in Organic Apple Orchards  

Oh, Young-Ju (Korea Biodiversity Reserarch Center Co., Ltd.)
Kang, Seok-Boem (Citrus Research Station, National Institute of Horticultural & Herbal Science)
Song, Yang-Ik (Apple Research Station, National Institute of Horticultural & Herbal Science)
Choi, Jin-Ho (Pear Research Station, National Institute of Horticultural & Herbal Science)
Paik, Woen-Ki (Department of Life Science, Deajin University)
Publication Information
Korean Journal of Soil Science and Fertilizer / v.45, no.5, 2012 , pp. 822-828 More about this Journal
Abstract
Organic fruit production has increased due to consumer's interest and government's political support for environmentally-friendly agriculture. The aim of this study was to investigate the effects of cover plants on soil microbial community and establish the fruit cultivation method by organic farming techniques. Cover plants used as an organic nutrient source in an apple orchard were rye and barley, the Gramineae and red clover and hairy vetch, the Leguminosae. In the effects of cover plants on the soil chemical characteristics, the soil pH values were higher than that of conventional organic pear orchard. The content of P showed no significant difference between control and cover plant plots. Organic matter level was similar in control and Gramineae cover plant plots, while organic matter content in cover plants belong to Leguminosae was lower than that of control plot. K content was lower in the plots treated with rye and red clover than control plot, while K content in hairy vetch treated plot was higher than control plot. Ca content was lower in control plot than in cover plant treated plots. Concentrations of Mg in the plots treated with barley and hairy vetch was lower than control plot. In August rye and red clover covered soil showed higher bacterial community density than that of control soil and barley treated soil showed highest Actinomycetes community density among treatments. Barley and hairy vetch soils showed higher level of fungi community density than that of control soil in August. In pyrosequencing analysis barley treated soil showed highest distribution ratio of Actinomycetes among treatment. Our findings might be used as basic data for choosing cover plant with effective organic matter decomposition and nutrition supply capacity.
Keywords
Cover plant; Soil microbial community; 16S rDNA;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Van Diepeningen, A.D., O.J. de Vos, G.W. Korthals, and A.H.C. van Bruggen. 2006. Effects of organic versus conventional management on chemical and biological parameters in agricultural soils. Appl. Soil Ecol. 31: 120-135.   DOI
2 Petersen, J. and A. Rover. 2005. Comparison of sugar beet cropping systems with dead and living mulch using a glyphosate-resistant hybrid. J. Agron. Crop Sci. 191: 55-63.   DOI
3 Ramos, M.E., E. Benitez, P.A. Garcia, and A.B. Robles. 2010. Cover crops under different managements vs. frequent tillage in almond orchards in semiarid conditions: Effects on soil quality. Appl. Soil Ecol. 44: 6-14.   DOI   ScienceOn
4 Sakamoto, K. and Y. Oba. 1993. Relationship between available N and soil biomass in upland field soils. Jpn. J. Soil Sci. Plant Nutr. 64: 42-48.
5 Suh, J.S., J.S. Kwon, and H.J. Noh. 2010. Effect of the long-term application of organic matters on microbial diversity in upland soils. Korean J. Soil. Fert. 43: 987-994.   과학기술학회마을
6 Wyland L.J., L.E. Jackson, W.E. Chaney, K. Klonsky, S.T. Koike, and B. Kimple. 1996. Winter cover crops in a vegetable cropping system: Impacts on nitrate leaching, soil water, crop yield, pests and management costs. Agric. Ecosyst. Environ. 59: 1-17   DOI   ScienceOn
7 Young, G. 2002. A fieldman's perspective on frowing and packing organic fruit. Compact Fruit Tree 35: 90-91.
8 Heuer, H., M. Krsek, P. Baker, K. Smalla, and E.M.H. Wellington. 1997a. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl. Environ. Microbiol. 63: 3233-3241
9 Kennedy, A.C. 1999. Bacterial diversity in agroecosystems. Agric. Ecosyst. Environ. 74: 65-76h   DOI
10 Kuo, S. and U.M. Sainju. 1997. Winter cover crop effects on soil organic carbon and carbohydrate in soil. Soil Sci. 61: 145-152.   DOI   ScienceOn
11 McGill, W.B., K.R. Cannon, J.A. Roberson, and F.D. Cook. 1986. Dynamics of soil microbial biomass and water-soluble organic carbon in Breton L after 50 years of cropping to two rotations. Can. J. Soil. Sci. 66: 1-19   DOI
12 NIAST. 2010. Methods of Soil Chemical Analysis. National Institute of Agricultural Science and Technology, RDA, Suwon, Korea.
13 Peck, G.M., P.K. Andrews, C. Rhichter, and J.P. Reganold. 2005. Internationalization of the organic fruit market: The case of Washington State's organic apple exports to the European Union. Rennewable Agr. Food Sys. 20: 101-112   DOI   ScienceOn
14 Fisk, J.W. and O.B. Hesterman. 2001. Weed suppression by annual legume cover crops in no-tillage corn. Agron. J. 93: 263-298.   DOI
15 Granatstein, D. 2002. North American trends for organic tree fruit production. Compact Fruit Tree. 35: 83-87.
16 Duxbury, J.M., M.S. Smith, and J.W. Doran. 1989. Soil organic matter as source and a sink of plant nutrients, In: Colenman, D. C. et al. (eds.). Dynamics of soil organic matter in tropical ecosystems, pp. 33-68. Univ. Hawaii Press, Honolulu, USA.
17 Choi, K.H., D.H. Lee, Y.Y. Song, J.C. Nam, and S.W. Lee. 2010. Current status on the occurrence and management of disease, insect and mite pests in the non-chemical or organic cultured apple orchards in Korea. Kor. J. Organic Agric. 18: 221-232.   과학기술학회마을
18 Embley, T.M. and E. Stackebrandt. 1994. The molecular phylogeny and systemativs of actinomycetes. Annu. Rev. Microbiol. 48: 257-289   DOI
19 Evans, J.R. and I. Terashima. 1987. Effects of nitrogen nutrition on electron transport components and photosynthesis in spinach, Aust. J. Plant Physiol. 14: 281-292.
20 Choi, H.S., L. Xiong, W.S. Kim, Y. Lee, and H.J. Jee. 2011. Comparison of soil physic-chemical and microbial characteristics in soil of 'Niitaka' pear orchards between organic and conventional cultivations. Korean J. Organic, Agric. 19(2): 229-243.
21 Celette, F., A. Findeling, and C. Gary. 2009. Competetion for nitrogen in an unfertilized intercropping system: The case of an association of grapevine and grass cover in a Mediterranean climate. Eur. J. Agron. 30: 41-51.   DOI
22 Cardina, J. 1995. Biological weed management. In: Smith, A.E. (Ed.), Handbook of Weed Management Systems. pp. 279-341. Marcel Dekker, New York, USA.