• Title/Summary/Keyword: Actin

Search Result 762, Processing Time 0.026 seconds

Potential Effects of Ginseng Saponin Fractions on Macrophage Chemotaxis and Intracellular Calcium and Actin Mobilization (대식세포의 화학주성과 세포내 칼슘과 Actin의 증가에 미치는 인삼사포닌 성분의 영향)

  • Shin, Eun-Kyoung;Kim, Sei-Chang
    • The Journal of Natural Sciences
    • /
    • v.10 no.1
    • /
    • pp.39-47
    • /
    • 1998
  • In the present study, We have tested the potential effects of ginseng saponin fractions on macrophage chemotaxis and intracellular calcium and F-actin mobilization. Peritoneal macrophages treated with various ginseng saponin fractions showed 28.4% to 71% of increasement of chemotaxis as compared with untreated cells. The activity of intracelluar calcium mobilization was increased up to 65% by treatment with saponins, and F-actin content also increased 10% in the cells loaded with NBD-phallacidin. When the cells were activated with calcium of PMA and treated with saponin fractions, the intracelluar F-actin content increased significantly and prolonged for 2 minutes. These results suggest that ginseng saponin fractions might be a chemoattractants.

  • PDF

Saturated fatty acid-inducible miR-103-3p impairs the myogenic differentiation of progenitor cells by enhancing cell proliferation through Twinfilin-1/F-actin/YAP1 axis

  • Mai Thi Nguyen;Wan Lee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.3
    • /
    • pp.277-287
    • /
    • 2023
  • Actin dynamics play an essential role in myogenesis through multiple mechanisms, such as mechanotransduction, cell proliferation, and myogenic differentiation. Twinfilin-1 (TWF1), an actin-depolymerizing protein, is known to be required for the myogenic differentiation of progenitor cells. However, the mechanisms by which they epigenetically regulate TWF1 by microRNAs under muscle wasting conditions related to obesity are almost unknown. Here, we investigated the role of miR-103-3p in TWF1 expression, actin filament modulation, proliferation, and myogenic differentiation of progenitor cells. Palmitic acid, the most abundant saturated fatty acid (SFA) in the diet, reduced TWF1 expression and impeded myogenic differentiation of C2C12 myoblasts, while elevating miR-103-3p levels in myoblasts. Interestingly, miR-103-3p inhibited TWF1 expression by directly targeting its 3'UTR. Furthermore, ectopic expression of miR-103-3p reduced the expression of myogenic factors, i.e., MyoD and MyoG, and subsequently impaired myoblast differentiation. We demonstrated that miR-103-3p induction increased filamentous actin (F-actin) and facilitated the nuclear translocation of Yes-associated protein 1 (YAP1), thereby stimulating cell cycle progression and cell proliferation. Hence, this study suggests that epigenetic suppression of TWF1 by SFA-inducible miR-103-3p impairs myogenesis by enhancing the cell proliferation triggered by F-actin/YAP1.

Localization of Anti-Actin-Gold Particles (10 nm) Labeled to Nuclear Actin of Urechis Sperm and Spermatids (항-액틴-금 입자 표지에 의한 개불(Urechis unicinctus) 정자 및 정세포 핵 Actin의 분포)

  • Shin, Kil-Sang;Kim, Ho-Jin;Kim, Wan-Jong
    • Applied Microscopy
    • /
    • v.30 no.4
    • /
    • pp.403-412
    • /
    • 2000
  • Urechis unicinctus spermatogenic cells, sperm and spermatids, prepared from testis are investigated to identify nuclear actin using amoeba monorlonal anti-actin as the first Ab and gold particles (10 nm) conjugated mouse IgG (immunogold) as the Ab marker. The Ag-Ab reactions analyzed the localization of nuclear actin of the spermatogenic cells and the immunogold particles incorporated mainly with nuclear matrices. A few immunogold particles are merged into the acrosomes and the other architectures of spermatogenic cells, such as mitochondrion and centrioles. It is often observed and there is a tendency in which the incorporated immunogold particles are increased in number in the nuclear matrices of sperm compared with that of spermatids The increments and decrements of the incorporated immunogold particles according to developmental stages and the spermatogenic architec-tures are interpreted and discussed in aspect of acrosomal function and of nuclear condensation of spermatids.

  • PDF

The Structure Change Study on the Actin-Myosin Cross-Bridges in SH of Myosin Head by The Computer Data (컴퓨터 분석에 의한 Myosin Head의 SH가 Actin-Myosin Cross-Bridges에 따른 구조변화 연구)

  • Kim, Duck-Sool;Ok, Soo-Yol;Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.84-90
    • /
    • 2005
  • IASL(iodo acetamide) and MSL(maleimide) disordered the orderly helix arrangement of myosin in the rest state of spin level. Especially the effect of IASL was great. Equatorial refiection(10,11) change inferred that myosin head was moved to the vicinity of actin filament by spin level. The intensity change of 143${\AA}$ and 72${\AA}$ could offer information of the mass projection of population of myosin heads along the :filament axis. The slope of intensity profile of the mass projection of 143${\AA}$ and reflection of IASL is appeared and that of MSL is appeared sharply. The decrease of 215${\AA}$ reflection intensity is appeared the periodical characteristic of 143${\AA}$ reflection by spin label. The raise of MSL actin reflection at 51${\AA}$ and 59${\AA}$ in the actin reflection change refers that the shifted myosin head binds a certain actin or changes an actin structure by spin label effect. Because iodo acetamide has a tendency to decease the actin reflection, actin dose not bind myosin head. From this result, we could conclude that LASL and MSL are spin labeled on SH of myosin head and disordered the helix arrangement of actin.

Cloning and mRNA Expression of an Actin cDNA from the Mulberry Longicorn Beetle, Apriona germari

  • Gui, Zhongzheng;Lee, Kwang Sik;Wei, Yadong;Yoon, Hyung Joo;Kim, Iksoo;Guo, Xijie;Sohn, Hung Dae;Jin, Byung Rae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.9 no.2
    • /
    • pp.187-191
    • /
    • 2004
  • Actin is a ubiquitous and highly conserved protein found in eukaryotic organisms. In this study, we describe the cDNA cloning and mRNA expression of an actin gene from the mulberry longicorn beetle, Apriona germari. The A. germari actin cDNA is 1524 bp containing a complete 1128 bp open reading frame that encodes a polypeptide of 376 amino acid residues with a predicted molecular weight of about 41.5 kDa. The deduced amino acid sequence of the A.germari actin cDNA showed 99% protein sequence identity to Homalodisca coagulata actin, differing at only two amino acid positions, and 92-98% protein sequence identity to known insect species actins. The predicted three-dimensional structure of A. germari actin revealed the four residue hydrophobic pulg loop characteristic of the actin family. Northern blot analysis showed that A. germari actin is highly expressed in epidermis and muscle, and less strongly in midgut, but not in the fat body of A. germari larva.

Importance of Microglial Cytoskeleton and the Actin-interacting Proteins in Alzheimer's Disease

  • Choi, Go-Eun
    • Biomedical Science Letters
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • Alzheimer's disease (AD) is the most common neurodegenerative disorder and is expected to become more and more widespread as life expectancy increases. New therapeutic target, as well as the identification of mechanisms responsible for pathology, is urgently needed. Recently, microglial actin cytoskeleton has been proposed as a beneficial role in axon regeneration of brain injury. This review highlights in understanding of the characteristics of microglial actin cytoskeleton and discuss the role of specific actin-interacting proteins and receptors in AD. The precise mechanisms and functional aspects of motility by microglia require further study, and the regulation of microglial actin cytoskeleton might be a potential therapeutic strategy for neurological diseases.

Repression of the F-box protein Skp2 is essential for actin damage-induced tetraploid G1 arrest

  • Jo, Yongsam;Shin, Deug Y.
    • BMB Reports
    • /
    • v.50 no.7
    • /
    • pp.379-383
    • /
    • 2017
  • We previously reported that p53 plays a role as a key regulator in the tetraploid G1 checkpoint, which is activated by actin damage-induced cytokinesis blockade and then prevents uncoupled DNA replication and nuclear division without cytokinesis. In this study, we investigated a role of Skp2, which targets CDK2 inhibitor p27/Kip1, in actin damage-induced tetraploid G1 arrest. Expression of Skp2 was reduced, but p27/Kip1 was increased, after actin damage-induced cytokinesis blockade. The role of Skp2 repression in tetraploid G1 arrest was investigated by analyzing the effects of ectopic expression of Skp2. After actin damage, ectopic expression of Skp2 resulted in DNA synthesis and accumulation of multinucleated cells, and ultimately, induction of apoptosis. These results suggest that Skp2 repression is important for sustaining tetraploid G1 arrest after cytokinesis blockade and is required to prevent uncoupled DNA replication and nuclear division without cytokinesis.

Cell Biological Changes of Validamycin Resistant Strain in Coprinus cinereus (Coprinus cinereus에서 Validamycin 저항성균주의 세포학적 변화)

  • Shim, Jae-Yong;Choi, Hyoung-Tae;Yoon, Kwon-Sang
    • The Korean Journal of Mycology
    • /
    • v.22 no.1
    • /
    • pp.31-35
    • /
    • 1994
  • Coprinus cinereus resistant strain against validamycin was successfully isolated. Germination rate of oidiospores, branching pattern, and localization of actin protein of the resistant strain were compared with normal strain. The resistant strain showed better germiantion rate of oidia (about 20 fold), more frequent branching, and even actin localization on validamycin plate where actin content was severely reduced in case of normal strain.

  • PDF

Effect of Three Amino Acid Residues at the Carboxyl Terminus in Unacetylated ${\alpha}$-Tropomyosin on Actin Affinity

  • Cho, Young-Joon;Jung, Sun-Ju;Seo, Sang-Min;Suh, Kye-Hong;Yang, Jae-Sub
    • Journal of Life Science
    • /
    • v.11 no.1
    • /
    • pp.1-6
    • /
    • 2001
  • In order to determine the role of the carboxyl terminal amino acid residues of unacetylated ${\alpha}$-tropomyosin in actin affinity two mutant tropomyosins were constructed by site-directed mutagenesis. TM16 was identical to the striated tropomyosin except that three amino acids in the carboxyl terminal end were altered to $^{282}TNM^{284}$ while in TM17 $^{282}TSI^{284}$ of the striated was replaced with$^{282}NSM^{284}$. TM16 and TM17 were overproduced in Escherichia coli and analyzed for actin affinity by comparing actin affinities of the striated and TM11 $^{282}NNM^{284}$). The apparent binding constants (Kapp) of unacetylated tropomyosins to actin were $5.1{\times}10^4M^{-1}$ for the striated, $1.1{\times}10^5M^{-1}$ for TM11, $1.09{\times}10^5M^{-1}$ for TM16, and $1.03{\times}10^5M^{-1}$ for TM17, respectively. Since the actin affinities of TM11, TM16, and TM17 were very similar, this result suggested that amino acid residues 282 and 283 were insignificant for acting affinity of unacetylated $\alpha$-tropomyosin. However, they all exhibited higher actin affinities than that of the striated, suggesting that Met residue at the carboxyl terminus of unacetylated smooth tropomyosin was rather important for actin affinity, presumably due to the nucleophilic nature of sulfur atom in Met residue.

  • PDF

Role of Rho A and F-actin for uropod formation in T lymphocytes (T 세포의 Uropod 형성에 있어 Rho A와 F-actin의 역할)

  • Lee, Jong-Hwan
    • Journal of Life Science
    • /
    • v.17 no.2 s.82
    • /
    • pp.192-197
    • /
    • 2007
  • Two distinct morphological features, leading edge and uropod, in mobile T lymphocyte are crucial for efficient directional movement. The uropod is a unique rear protrusion in migrating lymphocytes, in which several proteins, including CD44, ERM (ezrin/radixin/moesin), and F-actin cytoskeleton are concentrated and concerted. F-actin cytoskeleton is a basic mold for the shape maintenance. Rho A small GTPase acts as cytoskeleton organizer, So far, various pathways potentially can induce the Rho activation. PDZ domain is able to increase active Rho A form (Rho-GTP) level, reorganize F-actin cytoskeleton, disrupts the uropod structure and cell migration was diminished, suggesting that signaling pathways between Rho and F-artin cytoskeleton are related to uropod formation.