Actin 가

,

Potential Effects of Ginseng Saponin Fractions on Macrophage Chemotaxis and Intracellular Calcium and Actin Mobilization

Eun-Kyoung Shin and Sei-Chang Kim

Department of Biology, Division of Life Science, Pai Chai University,

Taejon 302-735, Korea

In the present study, we have tested the potential effects of ginseng saponin fractions on macrophage chemotaxis and intracellular calcium and F-actin mobilization. Peritoneal macrophages treated with various ginseng saponin fractions showed 28.4% to 71% of increasement of chemotaxis as compared with untreated cells. The activity of intracellular calcium mobilization was increased up to 65% by treatment with saponins, and F-actin content also increased 10% in the cells loaded with NBD-phallacidin. When the cells were activated with calcium or PMA and treated with saponin fractions, the intracellular F-actin content increased significantly and prolonged for 2 minutes. These results suggest that ginseng saponin fractions might be a chemoattractants.

Key words: Ginseng saponin, chemotaxis, calcium, F-actin

I. 2) (total saponin(C.S), diol saponin(D.S), triol saponin(T.S)) 가 (sheep) 가 1) 2. 가 2) ginsenoside Rg1 1) (peritoneal macrophage, PM) 3) panaxytriol Phosphate Buffered Saline(PBS, pH 7.4) (neuro-250 g . 4℃ 10 protective molecules) 5). 2 가 5×106 cells/ml 가 , viability trypan blue 95% 2) 가 48- well microchemotaxis chamber(Neuro Probe) 가 protozoa . HBSS 2% bovine serum albumin $28 \mu \ell$ 가 lower chamber polycarbonate , 2 filter(pore size, 5µm) low er 67). Actin chamber 가 가 actin upper chamber 8-9), actin chamber 37°C, 5% CO2 15 10-12). (preincubation) . 50 μℓ Protein kinase C(PKC) (2.5×106 cell/ml) upper well 2 가가 actin chamber filter 가 F- actin . Polycar-가 bonate filter Diff- Quik 가 가 가 $(\times 400)$. (immersion oil) gelsonin actin 10 immersion oil field(OIF) actin 3) Ca2+ II. dual excitation monoluminescence spectrometer chromator 1. 1% FBS가 가 (HBSS) 2 uM Fura-2AM(stock 10mg 1) /mℓ in DMSO) 30 (loading) 4- 5 **ICR**

(2×106 cells/mℓ). 가 cuvette
emission 510 nm excitation 340
nm actin bound 380 nm
unbound
4) Filamentous Actin (5% FBS 7\ 7\ RPMI) 2 3 .
1 2
1 . (10-4%)
가 PBS .
3.7% formaldehyde 30
0.2% Trioton- X100 30 permea-
bilization . 0.165 uM NBD-Phallacidin
1 PBS . 1.5
ml methanol 1 bound NBD-
Phallacidin excitation 465 nm,
emission 535 nm luminescence spectrometer
fluorescence intensity relative fluorescence index
ш.

mouse		
	가	가
monocyte	가 .	
	((chemotaxic gra-
dient)		
		13
(Table 1) 10	immersion (oil field(OIF)
		14
가		
C.S	(total saponin)	D.S(diol

4, 5

SPF(specific pathogen free)

saponin)

Table 1. Effect of ginseng saponin fractions on the migration of peritoneal macrophages

cells /10 OIF)	n
14 ± 5	4
19 ± 7	4
18 ± 4	3
$24\ \pm\ 10$	4
15 ± 6	3
$26\ \pm\ 12$	4
	14 ± 5 19 ± 7 18 ± 4 24 ± 10 15 ± 6

Cells were incubated with RPMI + 10% FBS (Control), C.S(10-3%), D.S(10-3%), T.S(10-3%), Calcium(10 uM), PMA(1 uM), Values are means \pm SE for n experiments. OIF, oil immersion fields.

가 가 actin 가 actin 가 가 14),

PKC

ICR

10-12)
5 nM
200 nM
フト 15).
フト フト コト フト フト フト ・
Fura-2AM loading luminescence spectrometer cuvette

Fig 1. Effect of ginseng saponin fractions on intracellular calcium mobilization in macroph ages. Cells were loaded with fura-2AM for 30 min. And then ginseng saponin fractions(10-4%), PMA(1 \(m\mathref{m}\mathre{m}\)) and calcium(10 \(m\mathre{m}\mathre{m}\)) were taken and intracellular calcium mobilization was measured by luminescence spectromater and plotted against time.

Fig. 2. Effect of ginseng saponin fractions on F-actin content in macrophages.

Cells were exposed to ginseng saponin fractions(10-4%) for a indicated times, and loaded with NBD-phallacidin and extracted with methanol. The relative F-actin content was measured by luminescence spectrometer.

Fig. 3. Effect of ginseng saponin fractions on PMA(1 uM)-induced F-actin content in macrophages. Cells were preincubated with PMA for 10 min. and exposed to ginseng saponin fractions(10-4%) for a indicated times, and load ed with NBD-phallacidin and extracted with methanol. The relative F-actin content was measured by luminescence spectrometer.

Fig. 4. Effect of ginseng saponin fractions and calcium on F-actin content in macrophages. Cells were incubated with calcium(10 [10]) and exposed to ginseng saponin fractions(10-4%) for a indicated times, and loaded with NBD-phallacidin and extracted with methanol. The relative F-actin content was measured by luminescence spectrometer.

Table 1		가 actin	가		
	가	8).			
			í	actin	가
가					
20-23),	chelation	•			
					inositol
	PKC	triphosphate(IP3)			가
PMA		actin			
85% 가 .		diacylglycer	ol a	ctin nucliatio	on activity
PKC		PKC	가가		
	가	24).			
	가				
actin			가		
	60% 가		가		
	(Fig. 1).		가		•
	C.S T.S		가		actin
가				•	PMA
(Fig. 2). 1	가				
		actin	가	synergi	istic effect가
PMA	actin		•		
가			가		actin
actin	가가		a	ctin	
•		가	15).		
actin	가	actin 7	ŀ		
	•	가		actin	
PMA 10				actin	
actin	(Fig. 3)			. PMA	actin
가	actin				
가	3				PMA
•		PKC	가	actin	가
가					
actin	가				
			가		•
가		PKC			actin
PMA	actin		가	•	
가					
	가 ,				
PMA	가가				
actin			1996		
=1	(Fig. 4)				
actin 가				*	
			1 7		
PMA	actin		V.		

- Singh VK, Agarwal SS, Gupta BM. 1984. Immunomodulatory activity of Panax ginseng extract. Proc. 4th Intl. Ginseng Symposium. p. 225.
- Hikokichic O, Hia S, Okada Y, and Yokozawa T. 1975. Studies on the biochemical action of ginseng saponin; Purification from ginseng extract of the active components stimulating serum protein biosynthesis. J. Biochem. 77: 1057
- Katano M, Yamamoto H, Matsunaga H. 1988. Efficiency of Ginkgo biloba extract (EGb 761) in antioxidant protection against myocardial ischemia and reperfusion injury. Biochem Mol Biol Int. 35: 125.
- 4. , . 1990. , p. 68.
- Wen TC, Yoshimura H, Matsuda S, Lim JH, Sakanaka M. 1996. Ginseng root prevents learning disability and neuronal loss in gerbils with 5 minute forebrain ischemia. Acta Neuropathol Berl. 91:15.
- Stossel T. From signal to pseudopod. How cells control cytoplasmic actin assembly. 1989. J. Biol. Chem. 264: 18261.
- Synderman R., Smith CD, Verghese MW.
 1986. Model for leukocyte regulation by chemo- attractant receptors: Roles of guanine nucleotide regulatory protein and polyphosphoinstide metabolism. J. Leukoc.
 Biol. 40: 785.
- 8. Francesco DV, Meyer BC, Greenberg S, and Silverstein SC. 1988. Fc receptor-mediated phagocytosis occurs in macrophages at exceedingly low cytosolic Ca2+ levels. *J. Cell Biology*. 106: 657.
- Howard TH, Meyer WH. 1984. Chemotactic peptide modulation of actin assembly and locomotion in neutrophils. J. Cell. Biol. 98: 1265.
- Hayashi K, Fujio Y, Kato I, Sobue K. 1991.
 Structural and functional relationships between
 h- and l-caldesmons. J. Biol. Chem. 266:
 355.

- Southwick LA, Stossel TP. 1983. Contractile proteins in leucocyte function. Semin. Hematol. 20: 305.
- Stossel TP, Chaponnier CR, Ezzell M, Hartwig JH, Janmey PA, Kwiatkowski DJ, Lind SE, Lind DB, Smith DB, Southwick FS, Yin HL, Zanes KS. 1985. Nonmuscle actin-binding proteins. Annu. Rev. Cell Biol. 1: 353.
- Abbas AK, Lichtman AH, Pober JS. 1991.
 Cellular and Molecular Immunology. W. B.
 Saunders company, U.S.A. 360-363.
- 14. Kerri SW, Lin JL, Wamboldt DD, Lin, JJ. 1994. Over-expression of human fibroblast caldesmone fragment containing actin-, Ca++/calmodulin-, and tropomyosin-binding domains stabilizes endogenous tropomyosis and microfilaments. J. Cell. Biology. 125: 359.
- 15. Hartwig JH, Janmey PA. 1989. Stimulation of a calcium-dependent actin nucliation activity by phorbol 12-myristate 13-acetate in rabbit macrophage cytoskeletons. *Biochemica et Biophysica Acta*. 1010: 64.
- Lacaille Dubois MA, Hanquet B, Cui ZH, Lou ZC, Wagner H. 1997. Jennisseensosides C and D, biologically active acylated triterpene saponins from Silene jenisseensis. Phytochemistry. 45: 885.
- Stevens MG, Olsen SC. 1993. Comparative analysis of using MTT and XTT in colorimetric assays for quantitating bovine neutrophil bactericidal activity. J Immunol Methods. 157: 225.
- Vicker MG, Bultmann H, Glade U, Hafker T. 1991. Ionizing radiation at low doses induces inflammatory reactions in human blood. Radiat Res. 128: 251.
- Yang YH, Hutchinson P, Littlejohn GO, Boyce N. 1994. Flow cytometric detection of anti-neutrophil cytoplasmic autoantibodies. J Immunol Methods. 172: 77.
- Francesco DV, Meyer BC, Greenberg S, Silverstein SC. 1988. Fc receptor-mediated phago- cytosis occurs in macrophages at exceedingly low cytosolic Ca24evels. J. Cell

Biology. 106: 657.

- Ronald LS, Packman TJ, Abboud CN, Lichtman MA. 1993. Signal transduction and the regulation of actin conformation during myeloid maturation. *Blood*. 77: 363.
- Steven G, Chang P, Silverstein SC. 1993.
 Tyrosis phosphorylation is required for Fc receptor- mediated phagocytosis in mouse macrophages. J. Exp. Med. 177: 529.
- 23. Kuijpers TW, Hoogerwerf M, Roos D. 1992.

 Neutrophil migration across monolayers of resting or cytokine-activated endothelial cells. Role of intracellular calcium changes and fusion of specific granules with the plasma membrane. *J Immunol.* 148:72.
- 24. Aneesa S, Elizabeth JL. 1992. Diacylglycerol stimulated formation of actin nucliation sites at plasma membranes. Science. 256: 245.