Browse > Article
http://dx.doi.org/10.15616/BSL.2020.26.1.1

Importance of Microglial Cytoskeleton and the Actin-interacting Proteins in Alzheimer's Disease  

Choi, Go-Eun (Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan)
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder and is expected to become more and more widespread as life expectancy increases. New therapeutic target, as well as the identification of mechanisms responsible for pathology, is urgently needed. Recently, microglial actin cytoskeleton has been proposed as a beneficial role in axon regeneration of brain injury. This review highlights in understanding of the characteristics of microglial actin cytoskeleton and discuss the role of specific actin-interacting proteins and receptors in AD. The precise mechanisms and functional aspects of motility by microglia require further study, and the regulation of microglial actin cytoskeleton might be a potential therapeutic strategy for neurological diseases.
Keywords
Alzheimer's disease; Microglia; Cytoskeleton; Actin filaments; Ionized calcium binding adapter molecules (Iba1); Cofilin 1 (CFL1);
Citations & Related Records
연도 인용수 순위
  • Reference
1 Akama KT, Eldik LJV. b-Amyloid Stimulation of Inducible Nitricoxide Synthase in Astrocytes Is Interleukin-1b- and Tumor Necrosis Factor-a (TNFa)-dependent, and Involves a TNFa Receptor-associated Factor- and NFkB-inducing Kinasedependent Signaling Mechanism. J Biol Chem. 2000. 275: 7918-7924.   DOI
2 Franco-Bocanegra DK, McAuley C, Nicoll JAR, Boche D. Molecular Mechanisms of Microglial Motility: Changes in Ageing and Alzheimer's Disease. Cells. 2019. 8: 693.   DOI
3 Ferreira ST, Clarke JR, Bomfim TR, De Felice FG. Inflammation, defective insulin signaling, and neuronal dysfunction in Alzheimer's disease. Alzheimers Dement. 2014. 10: S76-83.   DOI
4 Fu R, Shen Q, Xu P, Luo JJ, Tang Y. Phagocytosis of Microglia in the Central Nervous System Diseases. Mol Neurobiol. 2014. 49: 1422-1434.   DOI
5 Satoh J, Tabunoki H, Ishida T, Yagishita S, Jinnai K, Futamura N, Kobayashi M, Toyoshima I, Yoshioka T, Enomoto K, Arai N, Saito Y, Arima K. Phosphorylated Syk expression is enhanced in Nasu-Hakola disease brains. Neuropathology. 2012. 32: 149-157.   DOI
6 Smith ME. Phagocytosis of myelin in demyelinative disease: a review. Neurochem Res. 1999. 24: 261-268.   DOI
7 Sudduth TL, Schmitt FA, Nelson PT, Wilcock DM. Neuroinflammatory phenotype in early Alzheimer's disease. Neurobiol Aging. 2013. 34: 1051-1059.   DOI
8 Takahashi K, Rochford CD, Neumann H. Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J Exp Med 2005. 201: 647-657.   DOI
9 Tuppo EE, Arias HR. The role of inflammation in Alzheimer's disease. Int J Biochem Cell Biol. 2005. 37: 289-305.   DOI
10 Uesugi A, Kataoka A, Tozaki-Saitoh H, Koga Y, Tsuda M, Robaye B, Boeynaems JM, Inoue K. Involvement of protein kinase D in uridine diphosphate-induced microglial macropinocytosis and phagocytosis. Glia. 2012. 60: 1094-1105.   DOI
11 Ulrich JD, Finn MB, Wang Y, Shen A, Mahan TE, Jiang H, Stewart FR, Piccio FR, Colonna M, Holtzman DM. Altered microglial response to A beta plaques in APPPS1-21 mice heterozygous for TREM2. Mol Neurodegener. 2014. 20.
12 Lucin KM, Wyss-Coray T. Immune activation in brain aging and neurodegeneration: too much or too little? Neuron. 2009. 64: 110-122.   DOI
13 Vinzenz M, Nemethova M, Schur F, Mueller J, Narita A, Urban E, Winkler C, Schmeiser C, Koestler SA, Rottner K, Resch GP, Maeda Y, Small JV. Actin branching in the initiation and maintenance of lamellipodia. J Cell Sci. 2012. 125: 2775   DOI
14 Lai MK, Tan MG, Kirvell S, Hobbs C, Lee J, Esiri MM, Chen CP, Francis PT. Selective loss of P2Y2 nucleotide receptor immunoreactivity is associated with Alzheimer's disease neuropathology. J Neural Transm. 2008. 115: 1165-1172.   DOI
15 Leyns CEG, Ulrich JD, Finn MB, Stewart FR, Koscal LJ, Remolina Serrano J, Robinson GO, Anderson E, Colonna M, Holtzman DM. TREM2 deficiency attenuates neuroinflammation and protects against neurodegeneration in a mouse model of tauopathy. Proc Natl Acad Sci. 2017. 14: 1524-1529.
16 Napoli I, Neumann H. Protective effects of microglia in multiple sclerosis. Exp. Neurol. 2010. 225: 24-28.   DOI
17 Meraz-Rios MA, Toral-Rios D, Franco-Bocanegra D, Villeda-Hernandez J, Campos-Pena V. Inflammatory process in Alzheimer's Disease. Front Integr Neurosci. 2013. 7.
18 Mrak RE, Griffin WST. Common inflammatory mechanisms in Lewy Body disease and Alzheimer disease. J Neuropathol Exp Neurol. 2007. 66: 683-686.   DOI
19 Mittelbronn M, Dietz K, Schluesener HJ, Meyermann R. Local distribution of microglia in the normal adult human central nervous system differs by up to one order of magnitude. Acta Neuropathol. 2001. 101: 249-255.   DOI
20 Nimmerjahn A, Kirchho F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 2005. 308: 1314-1318.   DOI
21 Veerhuis R, Nielsen HM, Tenner AJ. Complement in the brain. Mol Immunol. 2011. 48: 1592-1603.   DOI
22 Piccio L, Buonsanti C, Mariani M, Cella M, Gilfillan S, Cross AH, Colonna M, Panina-Bordignon P. Blockade of TREM-2 exacerbates experimental autoimmune encephalomyelitis. Eur J Immunol. 2007. 37: 1290-1301.   DOI
23 Niwa R, Nagata-Ohashi K, Takeichi M, Mizuno K, Uemura T. Control of actin reorganization by slingshot, a family of phosphatases that dephosphorylate adf/cofilin. Cell. 2002. 108: 233-246.   DOI
24 Ohsawa K, Imai Y, Sasaki Y, Kohsaka S. Microglia/macrophagespecific protein iba1 binds to fimbrin and enhances its actinbundling activity. J Neurochem. 2004. 88: 844-856.   DOI
25 Ohsawa K, Imai Y, Kanazawa H, Sasaki Y, Kohsaka S. Involvement of iba1 in membrane ruffling and phagocytosis of macrophages/microglia. J Cell Sci. 2000. 113: 3073.   DOI
26 Rubio-Perez JM, Morillas-Ruiz JM. A Review: Inflammatory process in Alzheimer's disease, role of cytokines. Scientific World Journal. 2012: 756357.
27 Sasaki Y, Ohsawa K, Kanazawa H, Kohsaka S, Imai Y. Iba1 is an actin-cross-linking protein in macrophages/microglia. Biochem Biophys Res Commun. 2001. 286: 292-297.   DOI
28 Samstag Y, John I, Wabnitz GH. Cofilin: A redox sensitive mediator of actin dynamics during t-cell activation and migration. Immunol Rev. 2013. 256: 30-47.   DOI
29 Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science. 2010. 330: 841-845.   DOI
30 Fulga TA, Elson-Schwab I, Khurana V, Steinhilb ML, Spires TL, Hyman BT, Feany MB. Abnormal bundling and accumulation of f-actin mediates tau-induced neuronal degeneration in vivo. Nat Cell Biol. 2007. 9: 139.   DOI
31 Gomez-Nicola D, Boche D. Post-mortem analysis of neuroinflammatory changes in human Alzheimer's disease. Alzheimers Res Ther. 2015. 7.
32 Grammas P. Neurovascular dysfunction, inflammation and endothelial activation: Implications for the pathogenesis of Alzheimer's disease. J Neuroinflammation. 2011. 8: 26.   DOI
33 Gupton SL, Gertler FB. Filopodia: The fingers that do the walking. Sci STKE. 2007. 400: re5.
34 Hind LE, Vincent WJ, Huttenlocher A. Leading from the back: The role of the uropod in neutrophil polarization and migration. Dev Cell. 2016. 38: 161-169.   DOI
35 Hinman JD, Duce JA, Siman RA, Hollander W, Abraham CR. Activation of calpain-1 in myelin and microglia in the white matter of the aged rhesus monkey. J Neurochem. 2004. 89: 430-441.   DOI
36 Hopperton KE, Mohammad D, Trepanier MO, Giuliano V, Bazinet RP. Markers of microglia in post-mortem brain samples from patients with Alzheimer's disease: a systematic review. Mol Psychiatry. 2018. 23: 177-198.   DOI
37 Janssen B, Vugts DJ, Funke U, Molenaar GT, Kruijer PS, van Berckel BNM, Lammertsma AA, Windhorst AD. Imaging of neuroinflammation in Alzheimer's disease, multiple sclerosis and stroke: Recent developments in positron emission tomography. Biochim Biophys Acta. 2016. 1862: 425-441.   DOI
38 Knezevic D, Mizrahi R. Molecular imaging of neuroinflammation in Alzheimer's disease and mild cognitive impairment. Prog Neuropsychopharmacol Biol Psychiatry. 2018. 80: 123-131.   DOI
39 Jay TR, Miller CM, Cheng PJ, Graham LC, Bemiller S, Broihier ML, Xu G, Margevicius D, Karlo JC, Sousa GL, Cotleur AC, Butovsky O, Bekris L, Staugaitis SM, Leverenz JB, Pimplikar SW, Landreth GE, Howell GR, Ransohoff RM, Lamb BT. TREM2 deficiency eliminates TREM21 inflammatory macrophages and ameliorates pathology in Alzheimer's disease mouse models. J Exp Med. 2015. 212: 287-295.   DOI
40 Klesney-Tait J, Turnbull IR, Colonna M. The TREM receptor family and signal integration. Nat Immunol. 2006. 7: 1266-1273.   DOI
41 Koizumi S, Shigemoto-Mogami Y, Nasu-Tada K, Shinozaki Y, Ohsawa K, Tsuda M, Joshi BV, Jacobson KA, Kohsaka S, Inoue K. UDP acting at $P2Y_6$ receptors is a mediator of microglial phagocytosis. Nature. 2007. 446: 1091-1095.   DOI
42 Lai FP, Szczodrak M, Block J, Faix J, Breitsprecher D, Mannherz HG, Stradal TE, Dunn GA, Small JV, Rottner K. Arp2/3 complex interactions and actin network urnover in lamellipodia. EMBO J. 2008. 27: 982-992.   DOI
43 Elliott MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadl A, Walk SF, Park D, Woodson RI, Ostankovich M, Sharma P, Lysiak JJ, Harden TK, Leitinger N, Ravichandran KS. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature. 2009. 461: 282-286.   DOI
44 Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL, Finch CE, Frautschy S, Griffin WST, Hampel H, Hull M, Landreth G, Lue LF, Mrak R, Mackenzie IR, McGeer PL, O'Banion MK, Pachter J, Pasinetti G, Plata-Salaman C, Rogers J, Rydel R, Shen Y, Streit W, Strohmeyer R, Tooyoma I, Muiswinkel FLV, Veerhuis R, Walker D, Webster S, Wegrzyniak B, Wenk G, Wyss-Coray T. Inflammation and Alzheimer's disease. Neurobiol Aging. 2000. 21: 383-421.   DOI
45 Alhadidi Q, Shah ZA. Cofilin mediates lps-induced microglial cell activation and associated neurotoxicity through activation of nf-kb and jak-stat pathway. Mol Neurobiol. 2018. 55: 1676-1691.   DOI
46 Bartles JR. Parallel actin bundles and their multiple actin-bundling proteins. Curr Opin Cell Biol. 2000. 12: 72-78.   DOI
47 Blanchoin L, Boujemaa-Paterski R, Sykes C, Plastino J. Actin dynamics, architecture, and mechanics in cell motility. Physiol Rev. 2014. 94: 235-263.   DOI
48 Bemiller SM, McCray TJ, Allan K, Formica SV, Xu G, Wilson G, Kokiko-Cochran ON, Crish SD, Lasagna-Reeves CA, Ransohoff RM, Landreth GE, Lamb BT. TREM2 deficiency exacerbates tau pathology through dysregulated kinase signaling in a mouse model of tauopathy. Mol Neurodegener. 2017. 74.
49 Combs CK, Johnson DE, Karlo JC, Cannady SB, Landreth GE. Inflammatory mechanisms in Alzheimer's disease: Inhibition of b-Amyloid-Stimulated proinflammatory responses and neurotoxicity by PPARg agonists. J Neurosci. 2000. 20: 558-567.   DOI
50 Cribbs DH, Berchtold NC, Perreau V, Coleman PD, Rogers J, Tenner AJ, Cotman CW. Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: a microarray study. J Neuroinflammation. 2012. 9: 179.
51 Ajit D, Woods LT, Camden JM, Thebeau CN, El-Sayed FG, Greeson GW, Erb L, Petris MJ, Miller DC, Sun GY, Weisman GA. Loss of P2Y Nucleotide Receptors Enhances Early Pathology in the TgCRND8 Mouse Model of Alzheimer's Disease. Mol Neurobiol. 2013. 49: 1031-1042.   DOI