• 제목/요약/키워드: Acoustic wave

검색결과 1,216건 처리시간 0.045초

금속 배관의 연성된 음향 전파 특성 (Characteristics of Coupled Acoustic Wave Propagation in Metal Pipe)

  • 김호욱;김민수;이상권
    • 대한기계학회논문집A
    • /
    • 제32권3호
    • /
    • pp.267-273
    • /
    • 2008
  • The circular cylinder pipes are used in the many industrial areas. In this paper, the acoustic wave propagation in the pipe containing a gas is researched. First of all, the theory for the coupled acoustic wave propagation in a pipe is investigated. Acoustic wave propagation in pipe can not be occurred independently between the wave of the fluid and the shell. It requires complicated analysis. However, as a special case, the coupled wave in a high density pipe containing a light density medium is corresponded closely to the uncoupled in-vacuo shell waves and to the rigid-walled duct fluid waves. The coincidence frequencies of acoustic and shell modes contribute to the predominant energy transmission. The coincidence frequency means the frequency corresponding to the coincidence of the wavenumber in both acoustic and shell. In this paper, it is assumed that the internal medium is much lighter than the pipe shell. After the uncoupled acoustic wave in the internal medium and uncoupled shell wave are considered, the coincidence frequencies are found. The analysis is successfully confirmed by the verification of the experiment using the real long steel pipe. This work verifies that the coupled wave characteristic of the shell and the fluid is occurred as predominant energy transmission at the coincidence frequencies.

표면 탄성파를 이용한 선형 구동기의 개발 (Development of Linear Actuator Using Surface Acoustic Wave)

  • 김재근;임수철;이택주;박노철;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.852-855
    • /
    • 2008
  • In this paper, we proposed a new type's PZT actuator using surface acoustic wave. This actuator uses Rayleigh wave as an operational traveling wave. For the development of the actuator, each components of surface acoustic wave motor like PZT substrate, slider and IDT was studied theoretically and fabricated. For the measurement of transfer function of PZT substrate and operation of surface acoustic wave motor, network analyzer and 13.56MHz RF generator were used. Also the model which expresses the driving characteristic best was suggested and simulation was executed for the suggested model. And the future research works for improvement of SAW actuator was suggested.

  • PDF

단면적이 변하는 실린더 관에서의 음향, 엔트로피 및 와류 파동 (Acoustic, Entropy and Vortex Waves in a Cylindrical Tube With Variable Section Area)

  • 조규식
    • 한국추진공학회지
    • /
    • 제8권4호
    • /
    • pp.55-66
    • /
    • 2004
  • 본 논문에서는 로켓 엔진의 고주파 연소불안정 현상이 연소현상과 맞물린 음향학적 현상이라는점과 일반적으로 로켓엔진의 연소실 및 배기노즐이 원통형이라는 점을 고려하여 단면적이 변하는 원통형 관에서 음향, 엔트로피 및 와류 파동방정식의 해를 구하는 방법을 제시하였고 이를 통하여 엔트로피 및 와류파동이 음향파동에 미치는 영향을 수학적으로 해석 및 계산 할 수 있는 방법을 제시하였다. 이를 바탕으로 초음속 노즐에서 음향파동의 반사계수를 계산해 봄으로서 엔트로피 및 와류파동이 음향파동의 반사율을 강화 혹은 약화시킬 수 있다는 것을 보였다.

난류예혼합화염이 음파의 산란에 미치는 영향에 관한 연구 (The Effect of Turbulent Premixed Flame on the Wave Scattering)

  • 조주형;백승욱
    • 한국연소학회지
    • /
    • 제12권1호
    • /
    • pp.1-10
    • /
    • 2007
  • Analytical investigation of acoustic wave scattering from turbulent premixed flames was conducted to evaluate the acoustic energy amplification/damping. Such acoustic energy change is attributed to the acoustic velocity jump due to flame's heat release. Small perturbation method up to second order and stochastic analysis were utilized to formulate net acoustic energy and the energy transfer from coherent to incoherent energy. Randomly wrinkled flame surface is responsible for the energy transfer from coherent to incoherent field. Nondimensional parameters that govern net acoustic energy were determined: rms height and correlation length of flame front, incident wave frequency, incidence angle, and temperature ratio. The dependence of net acoustic energy upon these parameters is illustrated by numerical simulations in case of Gaussian statistics of flame front. Total net energy was amplified and the major factors that affect such energy amplification are incidence angle and temperature ratio. Coherent (incoherent) energy is damped (amplified) with rms height and correlation length of flame front.

  • PDF

음향공명기의 비선형 음향감쇠 특성에 관한 수치적 연구 (Numerical Study of Nonlinear Acoustic Damping Induced by Acoustic Resonators in a Combustion Chamber)

  • 손채훈;박이선
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제28회 춘계학술대회논문집
    • /
    • pp.13-16
    • /
    • 2007
  • 반파장 공명기가 장착된 연소실의 비선형 음향 감쇠를 알아보기 위하여 비선형 음향해석을 수행하였다. 먼저 공명기가 없는 기본 연소실에 80 dB에서 150 dB의 넓은 범위의 음향파를 가진하여 음향장을 분석하였다. 제 1 접선방향 음향 모드의 감쇠율은 가진되는 음향파의 크기에 따라 비선형적으로 증가하였고, 125 dB 이상부터 비선형성이 나타나기 시작했다. 다음으로 반파장 공명기의 감쇠 효과를 조사하였다. 선형해석으로부터 유도된 최적의 음향학적인 동조 조건이 비선형 음향해석에서도 여전히 유효함을 알 수 있었다. 큰 음향파의 섭동에 대한 감쇠는 효과적이지만, 선형 음향 가진에 비해서 음향학적인 감쇠기로써의 기능은 작아짐을 알 수 있었다.

  • PDF

고에너지 음향환경시험 튜브 개발 (Development of High Intensity Progressive Wave Tube)

  • 김영기;김홍배;문상무;우성현;임종민
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.962-965
    • /
    • 2005
  • A high intensity progressive wave tube is installed at Korea Aerospace Research Institute (KARI) for acoustic environmental tests. The test facility has 700 mm x 800 mm cross-sectional area, and provides acoustic environment of 165 dB over the frequency range of $25Hz{\sim}10,000Hz$. The facility consists of a 6 m long acoustic wave tube, acoustic power generation systems, gases nitrogen supply systems, and acoustic control systems. This paper describes how the basic parameters of the facility and power generation systems are controlled to meet the requirement of the test. The shape and length of the tube has been designed by using the size of test objects and the wave propagation characteristics of the tube. The capacity of acoustic power generation systems is determined by the energy conversion of acoustic wave and the efficiency of acoustic modulators. Moreover, the paper introduces test run results of the tube. Overall of 163dB has been generated by using the test facility.

  • PDF

초음파현미경을 이용한 Co 기 초내열 합금 열화재의 비파괴평가 (Nondestructive Evaluation for Thermally Degraded Co-base Superalloy by Scanning Acoustic Microscope)

  • 김정석;송진헌;권숙인;임재생;박익근
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.336-341
    • /
    • 2004
  • This research investigates the feasibility of ultrasonic microscope for nondestructive assessment of thermal degradation in artificially aged commercial Co-base superalloy, FSX414. This alloy has been used for high temperature structure applications such as stationary gas turbine blade and nozzle chamber in fossil plant. Microstructural change was found that the fine carbides became coarser and spheroidized in matrix as aging time increased. The leaky surface acoustic wave velocity gradually decreases by a maximum of 4.7% with increasing aging time up to 4,000hours. However, the longitudinal wave velocity has a little change. Also, it has a good correlation between leaky surface acoustic wave velocity and Vickers hardness. Consequently, LSAW can be used to examine the degree of degradation in thermally aged Co-base superalloy.

  • PDF

Frequency Domain Analysis of Laser and Acoustic Pressure Parameters in Photoacoustic Wave Equation for Acoustic Pressure Sensor Designs

  • Tabaru, Timucin Emre;Hayber, Sekip Esat;Saracoglu, Omer Galip
    • Current Optics and Photonics
    • /
    • 제2권3호
    • /
    • pp.250-260
    • /
    • 2018
  • A pressure wave created by the photoacoustic effect is affected by the medium and by laser parameters. The effect of these parameters on the generated pressure wave can be seen by solving the photoacoustic wave equation. These solutions which are examined in the time domain and the frequency domain should be considered by researchers in acoustic sensor design. In particular, frequency domain analysis contains significant information for designing the sensor. The most important part of this information is the determination of the operating frequency of the sensor. In this work, the laser parameters to excite the medium, and the acoustic signal parameters created by the medium are analyzed. For the first time, we have obtained solutions for situations which have no frequency domain solutions in the literature. The main focal point in this work is that the frequency domain solutions of the acoustic wave equation are performed and the effects of the frequency analysis of the related parameters are shown comparatively from the viewpoint of using them in acoustic sensor designs.

선 집속 초음파 현미경을 이용한 음탄성효과 측정에 의한 응력 평가 (Stress Evaluation by the Measurement of Acoustoelastic Effect Using a Line-Foucus Acoustic Microscope)

  • Kim, J.O.;Lee, Y.C.
    • 한국정밀공학회지
    • /
    • 제14권10호
    • /
    • pp.119-126
    • /
    • 1997
  • The relationship between the applied stresses and the change of elastic wave velocity has been established based on the acoustoelasticity theory. The non-uniform stress field in a loaded specimen has been evaluated from the surface acoustic wave velocity measured by the line-focus acoustic microscopy with the acoustoelastic constants obtained form a calibration test. The evaluated stresses are in good agreement with the results calculated by finite element method.

  • PDF

Acoustic mode 를 고려한 공동주택 중량충격음 소음해석 (The numerical analysis of heavy-weight impact noise for an apartment houses considering acoustic mode)

  • 문대호;황재승;박홍근;홍건호;임주혁
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.394-402
    • /
    • 2009
  • To investigate the heavy-weight impact noise of apartment houses, numerical analysis was performed. The analysis acoustic pressure consider acoustic mode by finite element method. The variables considered effecting on the acoustic pressure are the Acoustic mode, acoustic damping, and the impulse load. The heavy-weight impact noise is a changeable value in the room. Since the most part of the frequency component of heavy-weight impact noise has low frequency. The noise in low frequency is related to the vibration of structure, the reflection of acoustic wave caused by wall and the standing wave called by acoustic mode. The prediction by the numerical analysis was verified with test result of the heavy weight-impact noise at apartment houses.

  • PDF