• Title/Summary/Keyword: Acoustic echo canceller(AEC)

Search Result 17, Processing Time 0.02 seconds

Real-Time Implementation of an Acoustic Echo Canceller Using TMS320C31 DSP (TMS320C31 DSP를 이용한 음향반향제거기의 실시간 구현)

  • Jang, Byung-Wook;Kim, Si-Ho;Kwon, Hong-Seok;Bae, Keun-Sung
    • Speech Sciences
    • /
    • v.9 no.3
    • /
    • pp.17-24
    • /
    • 2002
  • The goal of this research is the real-time implementation of an AEC (Acoustic Echo Canceller) using the floating-point digital signal processor of TMS320C31. We employ an FIR-type adaptive filter with the conventional NLMS (Normalized Least Mean Square) algorithm for the adaptation of filter coefficients. We program and optimize the system in the assembler level to make it run in real-time. With 8 kHz sampling rate, the implemented AEC requires $46\;\mu$sec and $77\;\mu$sec computational time per sample for 128-and 256-tap filter, respectively. It corresponds to 37% and 62% of maximum computational ability of TMS320C31 DSP.

  • PDF

Acoustic Echo Canceller using Adaptive IIR Filters with Prewhitening Method and Variable Step-Size LMS Algorithm

  • Cho, Ju Pil;Hwng, Tae Jin;Baik, Heung Ki
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.2E
    • /
    • pp.14-20
    • /
    • 1997
  • The future teleconferencing systems will need an appropriate system which controls properly the acoustic echo for the convenient communication. The conventional acoustic echo cancellation algorithms involve large adaptive filters identifying the impulse response of the echo path. The use of adaptive IIR filters appears to be a reasonable way to reduce computational complexity. Effective cancellation of acoustic echo presented in teleconferencing system requires that adaptive filters have a rapid convergence speed. One of the main problems of acoustic echo cancellation techniques is that the convergence properties degrade for an highly correlated signal input such as speech signals. By the way, the introduction of linear prediction filers onto the structure of the acoustic echo cancellation represents one approach to decorrelate the speech signal. And variable step-size LMS algorithm improves the convergence speed through a little increasing of computational complexity. In this paper, we applied these two methods to the acoustic echo canceller(AEC) and showed that these methods have better performances than the conventional AEC.

  • PDF

Design and Implementation of Acoustic Echo Canceller (Acoustic Echo Canceller 설계 및 구현)

  • 장수안;문대철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.2C
    • /
    • pp.291-297
    • /
    • 2004
  • In this paper, a new structure for the AEC(Acoustic Echo Canceller) is proposed in which echo signal components that can be created in mobile communications is effectively eliminated. Block Data Flow Architecture is a parallel architecture that achieves high performance, high efficiency, high throughput, and almost linear speed up. The proposed architecture employs AEC and is implemented using the TMS320C6711 for real-time applications. The proposed AEC shows improved performance by eliminating echoes at 55ms delay path. Since the proposed AEC can also be implemented in Firmware, it is believed to effectively work on various types of echoes if it is applied on CDMA mobile devices. The TMS320C6711 shows much better performance comparing to previous DSPs. For experimental verifications, filtering operation using adaptive algorithm is performed on TMS320C6711 board and error signals resulted from computations are monitored on PC, and then the performance of the implemented AEC is verified through ERLE computation. According the results of simulation, good characteristic of 100dB are shown after 500 sampling data.

Performance Improvement of Stereo Acoustic Echo Canceler Using Gram-Schmidt Orthogonality Principle (그람-슈미트 (Gram-Schmidt) 직교원리를 이용한 스테레오 음향 반향 제거기의 성능향상)

  • 김현태;박장식;손경식
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.28-34
    • /
    • 2001
  • In stereo acoustic echo canceller scheme, coefficients of adaptive filter converge very slowly or misconverge to real acoustic echo path in receiving room. This is due to cross-correlation in stereo signals. In this paper, a new preprocess algorithm is proposed to improve the performance of stereo AEC(acoustic echo canceller) without computational burden. The proposed algorithm reduces cross-correlation using Gram-Schmidt orthogonality principles and nonlinear filtering. Computer simulations demonstrate that this algorithm performs well compared to conventional ones. When the acoustic path of transmitting room is changed, stereo AEC using proposed algorithm is well performed.

  • PDF

NLMS Adaptive Filter Based Acoustic Echo Canceller (NLMS 적응 필터 기반의 음향 반향 제거기)

  • Hwang, Sung-Sue;Yun, Sang-Suk;Kim, Suk-Chan;Lee, Chae-Dong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4C
    • /
    • pp.343-349
    • /
    • 2010
  • In this paper, we study real time AEC (acoustic echo canceller) based on NLMS adaptive filter. Proposed method improves conversation quality by enhancing the performance of AEC during double talk section and reduces the power consumption by controling the adaption operation of NLMS adaptive filter. Proposed method examines the convergence of the NLMS adaptive filter, stores the estimated echo path and chooses operation of NLMS adaptive filter. Furthermore if double talk is detected, the proposed AEC utilizes the stored echo path optionally considering missed double talk time. When the proposed AEC is used, the performance of the AEC is enhanced although the simple double talk detector is used and the power consumption of the AEC is reduced.

Implementation of Acoustic Echo Canceller with FPGA

  • Lim, Un-Cheon;Moon, Dai-Tchul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.3E
    • /
    • pp.79-84
    • /
    • 2004
  • In this paper, the AEC(acoustic echo canceller) is designed and implemented using VHDL(VHSIC hardware description language). The designed Echo Canceller employs the pipeline and the master-slave structure, and is realized with FPGA. As an adaptive algorithm, the Normalized LMS algorithm is used. For the coefficient adjustment, the Stochastic Iteration Algorithm(SIA) which uses only current residual values is used and the number of registers are evidently reduced and convergence speed is also much improved comparing to existing methods by using EAB of FPGA for FIR filter structure of transceiver. The designed Echo Canceller is verified with the test board implemented for this paper. From the timing simulation echo signals at about 1500 sampling data are converged and ERLE is improved by about 42-dB.

An Implementation of Acoustic Echo Canceller Using Adaptive Filtering in Modulated Lapped Transform Domain (Modulated Lapped Transform 영역에서 적응 필터링을 이용한 음향 반향 제거기의 구현)

  • 백수진;박규식
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.6
    • /
    • pp.425-433
    • /
    • 2003
  • Acoustic Echo Canceller (AEC) is a signal processing system for removing unwanted echo signals in teleconference and hands-free communication. Least mean square (LMS) algorithm is one of the adaptive echo cancellation algorithms and it has been most attractive because of its simplicity and robustness. However, the convergence properties of the LMS algorithm degrade with highly correlated input signals such as speech. For this reason, transform-domain adaptive filtering algorithm was introduced to decorrelate the colored input samples by using the orthogonal transform matrix such as DCT, DFT and then LMS adaptive filtering process is applied. In this paper, we propose a MLT domain adaptive echo canceller base on the MLT (Modulated lapped Transform) orthogonal transform matrix. The proposed algorithm achieves high decorrelation efficiency and fast convergence speed via modulated lapped transform of size 2NXN instead of NXN unitary transform such as DCT, DFT, Hadamad and it is applied to the acoustical echo cancellation system. Form the computer simulation with both synthesis and real speech, the proposed MLT domain adaptive echo canceller shows approximately twice faster convergence speed and 20∼30 ㏈ ERLE improvements over the DCT frequency domain acoustic echo cancellation system.

A comparative study of full-band and sub-band approaches to acoustic echo cancellation (음향 피드백 제거를 위한 전대역, 협대역 적응 필터의 비교)

  • 신민철;김상명
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.645-651
    • /
    • 2003
  • The system in which a microphone and a loudspeaker are simultaneously used can cause an echo. The echo is caused by feedback between the output of the loudspeaker and the input of the microphone. The acoustic echo canceller is a device to cancel the echo in a communication system. Its general procedure for cancellation is first estimating the plant response of the feedback path and then eliminating the feedback signal from the input signal. In this paper, full-band and sub-band approaches are compared by using some simulation examples.

  • PDF

Applying an Auxiliary Filter in the Adaptive Echo Canceller for Performance Improvement of Double-Talk Detection (음향반향제거기에서 동시통화 검출 성능 개선을 위한 보조필터 적용)

  • Kim Siho;Bae Keunsung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.1
    • /
    • pp.65-70
    • /
    • 2005
  • This paper deals with the problem of double-talk (DT) detection in anacoustic echo canceller (AEC). In the DT detection algorithm with correlation coefficient, detection errors occasionally occur because it is hard to set the threshold to distinguish DT from echo path change (EPC). Adaptive filter falls into the situation that it stops updating its filter coefficients when EPC is erroneously considered as DT at the starting-point of EPC. In addition, in case of echo path changing during the DT period, the end-point detection of DT period fails so that the AEC cannot update its filter coefficients for a while even after the DT period ends. To solve these problems, in this paper, we propose a novel AEC that employs an auxiliary filter. We use the idea that though the error signal cannot be estimated using reference signal in case or DT situation but it can be in case or EPC situation. The experimental result verifies that the proposed method could solve the problems caused by DT detection error or echo path change during the DT period.

A Noise Robust Adaptive Algorithm for Acoustic Echo Caneller

  • Lee, Young-Ho;Park, Jeong-Hoon;Park, Jang-Sik;Son, Kyong-Sik
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.05b
    • /
    • pp.423-426
    • /
    • 2003
  • Adaptive algorithm used in Acoustic Echo Canceller (AEC) needs fast convergence algorithm when reference signal is colored speech signal. Set-Membership Affine Projection (SMAP) algorithm is derived from the constraint, which is the minimum value adaptive filter coefficient error. In this paper, we test the characteristic about noise of the SMAP algorithm and proposed modified version of SMAP algorithm fur using at AEC. As the projection order increase, the convergence characteristic of the SMAP algorithm is improved where no noise space. But if the noise uncorrelated with input signal exists, the AEC shows bad performance. In this paper, we propose normalized version of adaptive constants using estimated error signal for robust to noise and show the good performance through AEC simulation.

  • PDF