• Title/Summary/Keyword: Acoustic Transmission loss

Search Result 234, Processing Time 0.025 seconds

Acoustic Analysis of the Cavity in Rotary Compressor (로터리 압축기 내부의 소음해석)

  • 정의봉;김봉준;김재호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.97-103
    • /
    • 2000
  • Gas pulsation discharged from the cylinder causes noise in the rotary compressor. Mufflers are usually used to reduce the noise generated by the gas pulsation. The muffler has been designed to maximize the acoustic transmission loss of the muffler. The gas which went through muffler is discharged to the cavity in compressor. Thus, the acoustic characteristics of cavity should be taken into account in muffler design. In this paper, the program for the acoustic substructure synthesis method is developed. This program can be interfaced with SYSNOISE which is commercial acoustic package. Several types of mufflers designed to have the better acoustic performance are suggested in this work and compared with the existing commerical muffler in the compressor. The acoustic performance of mufflers taking into consideration of the cavity in the compressor is also carried out by the developed program.

  • PDF

Influence of Internal Partition of Simple Extension Chamber on the Acoustic Transmission Loss (단순 확장 관 내부 파티션이 음향 투과손실에 미치는 영향해석)

  • Park, Jeong-Pil;Jeong, Weui-Bong;Ahn, Se-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.690-692
    • /
    • 2014
  • To identify characterization of a simple extension chamber that have the two internal partition, produce the curve to estimate the transmission loss without the computer analysis. For helpful for internal optimum design, identify the characteristic of internal partition on transmission loss. Made estimated transmission loss curve by function of relationship of internal partition and transmission. Check the similarity of predicted transmission loss and analysis transmission loss. Usage of the predicted transmission loss made by relationship of internal partition and transmission loss is good information to place the internal partition so as to maximize the transmission loss on target frequency at optimal design on muffler.

  • PDF

Prediction of Transmission Loss of Elliptic Expansion Chamber with Mean Flow by 3-Dimensional Finite Element Method (3차원 유한요소법을 이용한 타원 단면 소음기의 투과 손실 계산)

  • 윤성기;이응식
    • Journal of KSNVE
    • /
    • v.3 no.3
    • /
    • pp.271-278
    • /
    • 1993
  • Acoustic characteristics of silencer system are affected by various geometric parameters such as cross sectional geometry, size of chamber, and location of inlet-outlet port. It is impossible to obtain exact solutions of the equations of acoustic wave propagation except few simple cases. So, we resort to numerical techniques to analyze performance of acoustic system. In this work, finite element formulation has been obtained to predict transmission loss of an arbitrary 3-dimensional muffler in the presence of mean flow of low mach number. The effect of the degree of the ellipticity of expansion chambers on the transmission loss has been studied using the resulting finite element equation.

  • PDF

Acoustic Characteristics of a .Silencer by Using Array Resonators (공명기 배열을 이용한 소음기의 음향학적 특성)

  • 김양한;서상현
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.10
    • /
    • pp.975-982
    • /
    • 2004
  • Helmholtz resonator is used to reduce noise of the narrow frequency band. It has high transmission loss at its resonance frequency. The silencer that combines many resonators could control broadband noise at low frequency. To convey this rather simple idea, serial and parallel arrangement of resonators have been tested to obtain high transmission loss characteristics in the band of which are selects. Theoretical and experimental results explain these characteristics in the absence of mean flow. The change of acoustic characteristics by the resonance frequencies and resonators arrangement are explained by using the equivalent Impedance analysis that is defined in this paper. It shows that the transmission loss has a maximum value when the separation distance between each resonator is λ/4 of its wavelength.

Optimum Design for Inlet and Outlet Locations of Rectangular Expansion Chamber for Improving Acoustic Performance (사각형 단순 확장소음기의 성능향상을 위한 입$\cdot$출구 위치의 최적설계)

  • 김봉준;정의봉;황상문
    • Journal of KSNVE
    • /
    • v.9 no.4
    • /
    • pp.738-746
    • /
    • 1999
  • The performance of muffler can be improved for a frequency range of interest by moving inlet and outlet locations. And optimal location of inlet and outlet can be determined to improve the acoustic performance. The optimum design using FEM, however, may take a very long time and be very hard to take inlet and outlet locations as design variables. In this paper, the acoustic performance of reactive type single expansion chamber muffler is predicted using higher order mode theory. The sensitivity analysis of transmission loss with respect to the location of inlet and outlet is suggested. And the acoustic power transmission coefficient for a frequency of interest is used as cost function. Optimum location of inlet and outlet is determined to minimize cost function by using SUMT algorithm.

  • PDF

Development of Underwater Acoustic Performance Measurement System Using Pulse Tubes (펄스 튜브를 이용한 수중 음향 성능 측정 시스템 개발)

  • Seo, Yun-Ho;Kim, SangRyul;Lee, Sung-Min;Byun, Yang-Heon;Seo, Youngsoo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.603-608
    • /
    • 2014
  • Underwater acoustic materials are installed in order to reduce reflection, transmission and radiation of an underwater structure. The acoustic performance of the materials should be evaluated in accurately-controlled environment in terms of temperature and static pressure. In this paper, three pulse tubes, which is equipped with temperature and pressure controllers, are designed and developed to evaluate echo reduction and transmission loss for evaluating the performance below 10 kHz and 30kHz, respectively. The new procedures of the evaluation are suggested to improve the accuracy and the validation for the developed pulse tubes is carried out by comparing theoretical values to experimental ones.

  • PDF

A Study on the Acoustical Characteristics of Exhaust Decoupler (배기계 디커플러의 음향 특성에 관한 연구)

  • Hur, Deog-Jae;Lim, Jong-Yun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.93-99
    • /
    • 2006
  • Flexible couplers are widely used for exhaust transmitted vibration reduction in vehicles. This paper describes an investigation into the acoustical characteristics of exhaust flexible coupler by the simulation and testing. Computational acoustic simulation is carrying out to investigate resonance frequency and transmission loss of decoupler using the boundary element method and transfer matrix approach. To confirm the acoustical simulation results of exhaust decoupler, we compare with measured experimental results by the test of transmission loss measurement system. In the comparison with simulation results and tests results, there is correctly fit the resonance frequency and the trend of transmission loss. Also, we show that the acoustical structure of decoupler is analogous to the expended tube or side branch resonator. The characteristics of exhaust decoupler have a marked increase in the acoustic attenuation at the specified frequency bend. Therefore the decoupler is applied to develop the exhaust system not only for the vibration isolator but also for the noise attenuator.

Temporal and Spatial Variability of Sound Propagation Characteristics in the Northern East China Sea (동중국해 북부해역에서 음파전달 특성의 시공간적 변동성)

  • Park, Kyeongju;Chu, Peter Cheng
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.201-211
    • /
    • 2015
  • Acoustic propagation in shallow water with changing environments is a major concern of navy. Temporal and spatial variability of acoustic propagation in the northern East China Sea (ECS) is studied, using the 11 years hydrographic data and the Bellhop acoustic model. Acoustic propagation in the northern ECS is highly variable due to extensive interaction of various ocean currents and boundaries. Seasonal variations of transmission loss (TL) with various source depths are highly affected by sharp gradient of sound speed and bottoms interaction. Especially, various bottom sediment types lead to severely degrading a waterborne propagation with bottom loss. In particular, the highly increased TL near the ocean front depends on the source position, and the direction of sound propagation.

Estimation of a transition point of sound propagation condition using transmission loss data measured in SAVEX15 (SAVEX15 실험 해역에서 측정된 전달손실 자료를 이용한 음파 전달 조건의 변환점 추정)

  • Kwon, Hyuckjong;Choi, Jee Woong;Kim, Byoung-Nam
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • Sound propagation in shallow water changes from spherical spreading to cylindrical spreading, depending on boundary conditions, and this point is defined as a transition point of the sound propagation condition. Theoretically, the transition point can be estimated using the transmission loss as a function of source-receiver range. In this paper, the transmission loss curve in a Pekeris waveguide is predicted using a parabolic-equation based acoustic propagation model and using this transmission loss curve, the range from the source of the transition point is estimated, which is compared to the critical distance calculated using the sound speed ratio of water to sediment. In addition, the effects of the sound speed profile and source depth change on the transition point are investigated. Finally, the transition point is estimated using the transmission loss data measured during the period of the SAVEX15 (Shallow Water Acoustic Variability EXperiment 2015) conducted 65 km southwest of Jeju Island in May 2015, and it is compared to the ocean environmental parameters to understand the properties of sound propagation in the experimental area.

Design of Small Acoustic Filter for ITE Type Noise Protector (ITE 타입의 소음 차폐기용 소형 음향 필터의 설계)

  • Lee, Yun-Jung;Kim, Pil-Un;Chang, Yong-Min;Lee, Sang-Heun;Cho, Jin-Ho;Kim, Myoung-Nam
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.479-487
    • /
    • 2004
  • The prevention of noise induced hearing loss is very important, because there is no treatment for it. There are some kinds of devices for hearing protection, and those are effective in preventing a noise induced hearing loss. However, people often resist the use of hearing protection devices because it is difficult to have a conversation. Therefore, a hearing protection device is must effective not only in hearing protection but also in preserving communication ability. In this paper, we proposed a small acoustic filter for ITE type noise protector to solving the problem about the difficulties of conversation. That is applied a principle of acoustic filters that have been used for a muffler of automobiles, guns, and etc. To find out the sound transmission characteristic at the eardrum, we regarded an acoustic filter and external ear canal as a coupled system. So, we simulated the coupled system with OrCad, and experimented with a designed acoustic filter and a 2 cc coupler which has the same transmission characteristic as the external ear canal has. We confirmed that it is possible to adjustment acoustic transmission characteristics through simulation of electrical model for acoustic filter and external ear and experiments using designed small acoustic filters.