• Title/Summary/Keyword: Acoustic Reflection

Search Result 229, Processing Time 0.035 seconds

Experimental Study on Estimation of Flight Trajectory Using Ground Reflection and Comparison of Spectrogram and Cepstrogram Methods (지면 반사효과를 이용한 비행 궤적 추정에 대한 실험적 연구와 스펙트로그램 및 캡스트로그램 방법 비교)

  • Jung, Ookjin;Go, Yeong-Ju;Lee, Jaehyung;Choi, Jong-Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.115-124
    • /
    • 2015
  • A methodology is proposed to estimate a trajectory of a flying target and its velocity using the time and frequency analysis of the acoustic signal. The measurement of sound emitted from a flying acoustic source with a microphone above a ground shall receive both direct and ground-reflected sound waves. For certain frequency contents, the destructive interference happens in received signal waveform reflected path lengths are in multiple integers of direct path length. This phenomenon is referred to as the acoustical mirror effect and it can be observed in a spectrogram plot. The spectrogram of acoustic measurement for a flying vehicle measurement shows several orders of destructive interference curves. The first or second order of curve is used to find the best approximate path by using nonlinear least-square method. Simulated acoustic signal is generated for the condition of known geometric of a sensor and a source in flight. The estimation based on cepstrogram analysis provides more accurate estimate than spectrogram.

Rake Receiver Based on Bit Error Rate of Training Sequence Duration for Underwater Acoustic Communication (수중음향통신을 위한 훈련 신호 구간의 비트 오차율에 기반한 레이크 수신기)

  • Son, Ji-hong;Kim, Ki-man
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.5
    • /
    • pp.887-894
    • /
    • 2016
  • In the underwater acoustic communication channels, a multipath reflection becomes the cause of obstacle. To solve this problem, a rake receiver has been required for which one could take the time diversity. However, there is a concern about using incorrect path to recover signals with a high weighting value as underwater acoustic communication channels have severe time-variant property. In order to prevent these problem, a rake receiver is proposed which is based on BER(bit error rate) train sequence duration. The performance is evaluated through lake trials; there are three methods that are a proposed rake receiver, a conventional rake receiver, and a non-rake receiver. As a result, the number of bit errors in the proposed rake receiver, that of bit errors in the conventional rake receiver, and that of bit errors in the non-rake receiver is 8, 45, and 72, respectively.

Development and Performance Tests of the Waste Water Diffusers using Acoustic Resonance and Oscillatory Pulsation (음향공진과 맥진동 현상을 이용한 폐수처리용 산기관 개발 및 성능시험)

  • Hong, Suk-Yoon;Moon, Jong-Duck
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.6
    • /
    • pp.52-58
    • /
    • 1996
  • Using the acoustic resonances and oscillatory pulsations considered as the branch of wave technologies, the concept of the acoustic resonance diffusers for waste water treatment which maximize the oxygen transfer efficiency in gas-liquid two phase medium have been proposed, and studies for the principles and performance tests were accomplished. Besides, the design concepts for the low pressure Helmholtz resonator, cylinder and annular type reflection resonator and combined type resonance system have been implemented. The acoustic resonance energy which can speed up the mass transfer process increase the oxygen transfer efficiency, and periodic pulsations generated from the instability of air jet from nozzle make very small air bubbles. Then, the annular type jet resonator(AJR) applying these two principles successfully was evalulated as the most promising device and also the efficiency showing $20{\sim}30%$ better than conventional diffusers has been verified experimentally.

  • PDF

Analysis of Optimum Iterative Codes for Underwater Acoustic Communication based on Turbo Equalizer (수중 음향통신에 적합한 터보 등화기 기반의 최적의 반복 부호 기법 연구)

  • Park, Tae-Doo;Jung, Ji-Won
    • Journal of Navigation and Port Research
    • /
    • v.37 no.5
    • /
    • pp.487-492
    • /
    • 2013
  • Underwater acoustic communication has multipath error because of reflection by sea-level and sea-bottom. The multipath of underwater channel causes signal distortion and error floor. In order to improve the performance, it is necessary to employ an iterative coding scheme. Among the iterative coding scheme, turbo codes, LDPC codes and convolutional code based on BCJR algorithm are dominant channel coding schemes in recent. Therefore this paper analyzed the performance of iterative codes based on turbo equalizer with the same coding rate and similar codeword length. The performances of three kinds of iterative codes were evaluated in the environment of underwater acoustic communication channel that are real data collected in Korean east sea. The distance of transmitter and receiver was 5Km and data rate was 1Kbps. As a result, convolutional code based on BCJR algorithm has better performance in underwater channel than turbo codes and LDPC codes.

Target Scattering Echo Simulation for Active Sonar System in the Geometric Optics Region (기하광학영역에서의 능동소나 표적신호합성)

  • 신기철;박재은;김재수;최상문;김우식
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.91-97
    • /
    • 2001
  • Since the new field information of target signal is important in the development and verification of active sonar system, experimental method and simulation technique are widely used in order to analyze the detail characteristics of target scattered echoes. Therefore, in this paper, the scale target experiment is performed to develope and Improve the target signal simulation model. Since the experimental results show that the specular reflection is the major component among scattering mechanisms, the target signal simulation model based on the Geometric Optics Theory (GOT) is developed. Complex target is separated into simple shapes, known as canonical shape. The contribution from individual canonical shapes are summed with proper phase and amplitude to produce the target strength of the whole complex body. Simulated target signal is compared with the experimental results and discussed.

  • PDF

A Study of the Couplant Effects on Contact Ultrasonic Testing

  • Kim, Young-H.;Song, Sung-Jin;Lee, Sung-Sik;Lee, Jeong-Ki;Hong, Soon-Shin;Eom, Heung-Seop
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.6
    • /
    • pp.621-626
    • /
    • 2002
  • The amplitude of a back-wall echo depends on the reflection coefficient of the interface between a transducer and a test material when using contact pulse-echo ultrasonic testing. A couplant is used to transmit ultrasonic energy across the interface, but has an influence on the amplitude of the pulse-echo signal. To investigate the couplant effect on pulse-echo ultrasonic testing, back-wall echoes are measured by using various couplants made of water and glycerine in a carbon and austenitic stainless steel specimens. The amplitude of the first back-wall echo and the apparent attenuation coefficient increases with the acoustic impedance of the couplant. The couplant having a higher value of the transmission coefficient is more effective for flaw detection. The reflection coefficient should be known in order to measure the attenuation coefficient of the test material.

A Study on Improvement Effect of voice information transmission using Auralization at the hydraulic turbine dynamo room in Dam (가청화를 이용한 댐 수차 발전기실의 음성정보전달 개선효과에 관한 연구)

  • Kook, Joung-Hun;Ju, Duck-Hoon;Jung, Eun-Jung;Kim, Jae-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.263-267
    • /
    • 2007
  • Even though Waterpower Generation as pollution-free has its own merit of contribution by supply of good quality electricity, due to the noise made at the time of its operation, a normal mutual communication among the workers and technicians engaging at the hydraulic turbine dynamo room is almost impossible, and since those finishing materials had been used mainly by reflection material, it is actual situation that when working for maintenance in the hydraulic turbine dynamo room, as counterpart's voice vibrates, its working efficiency is difficult to ensure. On such view point, this Research has conducted Psycho-acoustics Experiment about voice Definition using Auralizational Technique, on the object for the hydraulic turbine dynamo room that improved its acoustic performance by computer simulation. As the result of Study, it was known that the clearness of sound with regard to voice information transmission was apparently improved in all items than before improvement. Therefore, it is considering that these results would be utilized usefully when renovation on the hydraulic turbine dynamo room in the future.

  • PDF

Bit Split Method for Efficient Channel Estimation in UWA Channel (수중 다중경로 채널에서 효과적인 채널추정을 위한 비트 분리 방법)

  • Kim, Min-Hyuk;Park, Tae-Doo;Kim, Chul-Seung;Jung, Ji-Won;Yong, Chun-Seung;Sohn, Kwon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.10
    • /
    • pp.2207-2214
    • /
    • 2010
  • Underwater acoustic(UWA) communication has multipath error because of reflection by sea-level and sea-bottom. The multipath of UWA channel causes signal distortion and error floor. In this paper, we proposed split input bits of channel decoder using method of maximum value, average value, LLR value for optimal estimation. Channel coding method is LDPC(N size=16000) standard in DVB-S2. As shown in simulation results, the performance of LLR value method is better than other methods.

Ultrasonic evaluation of small surface fatigue cracks initiating in residual stress zone (잔류응력 영역에서 발생한 작은 피로균열의 초음파 평가)

  • Kang Kae-Myung;Kim Jin-Yeon
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.1 s.9
    • /
    • pp.55-62
    • /
    • 2000
  • A surface acoustic wave method for the evaluation of small fatigue crack initiated from a pit-type surface flaw is presented. In-situ ultrasonic experiments are performed for aluminum 2024-T3 alloy samples under the fatigue test. During the fatigue test, the surface acoustic wave reflection signal from the pit and crack is measured under different hold-stress levels. From the measured and predicted surface wave reflections the depths of fully and partially open cracks are determined and results are verified by comparing with SEM fractography The crack opening behavior of the fatigue crack is evaluated from the predicted effective crack depths. The method developed in this study can be applied to monitor and characterize crack initiation and propagation from pit-type surface flaws in the early stage of fatigue life.

  • PDF

Theory of Acoustic Propagation in 3 Dimensional Wedge Domain (3차원 쐐기형 영역에서의 음향파 전달 이론)

  • Seong, Woo-Jae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.2E
    • /
    • pp.83-91
    • /
    • 1994
  • Three components contribute to the acoustic field propagating in a wedge or over a ridge : a direct path arrival, an image component due to reflection from the boundaries and a component diffracted by the apex. All three contributions are included in a new, exact solution of the Helmholtz equation for the three-dimensional time harmonic field from a point source in a wedge(or over a ridge) formed by two intersecting, pressure-release plane boundaries. The solution is obtained by applying three integral transforms, and consists of and infinite sum of uncoupled normal nodes. The mode coefficients are given by a finite integral involving a Gegenbauer polynomial in the integrand, which may be computed relatively efficiently. Results of the theory for propagation over a 90 degree ridge is discussed.

  • PDF