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Theory of Acoustic Propagation m 3 Dimensional Wedge Domain
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ABSTRACT

Three components contribute to the acoustic field propagating m a wedge or over a ridge : a direct path arrival, an 

image component due to reflection from the boundaries and a component diffracted by the apex. All three 

contributions are included in a new, exact solution of the Helmholtz equation for the three-dimensional time har­

monic field from a point source in a wedge (or over a ridge) formed by two intersecting, pressure-release plane 

boundaries. The solution is obtained by applying three integral transforms, and consists of an infinite sum of 

uncoupled normal modes. The mode coefficients are given by a finite integral involving a Gegenbauer polynomial in 

the integrand, which may be computed relatively efficiently. Results of the theory for propagation over a 90 degree 

ridge is discussed.

요 약

쐐기형 영역에서 전파되는 음향파는 다음 3가지 성분으로 분류할 수 있다 : 직접 선날 경로에 의흔*  성분, 경계면으로 부터 

의 반사에 의한 상(image) 성분 그리고 정점에 의한 산란 성분, 2개의 평면으로 경계가 구성된 쐐기(또는 봉우리) 영역에서 

점원에 의한 3차원적인 시간 조화 장(fi이d)에 대한 Helmholtz 방정식의 새로운 해를 구하였으며, 그 해는 위의 3가지 성분 

을 모두 내포하고 있다. 이 해는 정상모우드 들의 무한 급수로 이루어셨으며 각 모우드 계수는 Gegenbauer polynom囱을 

포함하는 유한적분으로 주어진다. 위의 해석해를 사용하여 봉우리 영역에서 음파의 분포를 계산하였匸十.

I. Introduction

In this paper an exact solution is developed for 

the acoustic field generated by a harmonic point 

source in an infinite wedge-shaped ocean, formed 

by two perfectly reflecting planes which intersect 

along the line of the apex. The new solution in 

eludes an image component of the field and a dif­

fracted component arising from scattering at the 

?ipex, although emphasis is given in the discus­

sion to the diffracted field since the normal modes 

associated with the image have been examined at 

length elsewhere[1]. The analysis is presented in 

the context of ocean wedges and ridges, but obvi­

ously has wider application.

It is well known that when the wedge angle 仇) 

(Fig. la) is a submultiple of n divided by an 
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integer) there is no diffraction from the apex of 

the wedge} 1. 21. In general however, when the 

wedge angle is not a sub-multiple of 兀，diffraction 

from the apex does occur, although it may or may 

not be of significance. For a small wedge angle, 

say on the order of 2°(which is typical of the con­

tinental slope) diffraction effects are negligible 

even when is not precis이y a sub-mutiple of n. 

As the wedge angle increases, diffraction from 

the apex gains in significance, becoming a pre^ 

dominant factor when exceeds ?r(Fig. lb). S니- 

ch large angle wedges, with > n, are represen­

tative of the mid-ocean ridges and other ridge­

like sti■니ctures on the sea floor.

Tolstoy[6] using the method of normal coordinat 

es. Buckingham derived an exact solution for the 

case of a wedge void of diffraction component[ 1 j 

and with diffraction component[7] which is expr 

essed as an infinite integral. More recently, sev­

eral numerical solutions of the wedge problems 

have appeared, based on the parabolic equation 

approximation]" normal mode theory[9] and fi­

nite difference method[10]. However, these nu­

merical methods are approximate solutions with 

inherent assumptions in the development stages 

or its implementation.

The starting point of the analysis presented here 

is the general expression for the field produced 

by a harmonic source in a perfect wedge derived 

by Buckingham〕!] This result, which is obtained 

from the inhomogeneous Helmholtz equation, is ex­

act throughout the wedge-shaped domain includ­

ing the source point. The solution is expressed in 

cylindrical coordinates(Fig. 2)f with the z axis run­

ning along the apex of the wedge. As we shall 

show, the field consists of an image contribution 

(although image theory is not invoked in deriving 

the solution) and a diffracted component. By Fo­

urier transforming our result for the CW field 

back into the time domain, it can be shown to be 

consistent with the impulsive fi이d in a wedge de­

rived by Biot and T이stoy〔6].

(b)

Figure 1. Schematic diagram for (a) wedge and (b) rid­

ge problem.

Diffraction in wedges was first discussed by Som- 

merfeld[3] at the turn of the century. Since then 

an extensive literature has accumulated on acous­

tics and electromagnetics fields in wedge-like do­

mains. In connection with acoustics, an exact sol­

ution in terms of normal modes was derived by 

Bradley and Hudimac[4] and examined by Graves 

et al[5] : and diffraction of a spherical transient 

by the apex of a wedge was addressed by Biot and Figure 2. Cylindrical coordinate system.
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11. The Time-Harmonic Fi이d f1 '■ W «
4(r. r \ 2.= i | p----  /. ( pr) ] (pr ) dp (4)

J” 〃

When the wave equation with an impulsive so 

urce term is Fourier transformed with respect to 

time, it becomes the inhomogeneous Helmholtz 

equation :

▽ y() ( r - r (1)

where v- is the Laplacian,。is the Fourier trans­

form of the velocity potential of the fluid, k is the 

wavenumber,(丿 is the source strength, 6 is the Dir­

ac delta function, and r and r' are the receiver 

and the source points, respectively. For the case 

of a wedge with two perfectly reflecting bound­

aries. an exact solution for。can be obtained in 

the form of a sum of normal modes. This solution 

has been derived in Ref. [1] for a wedge with pres­

sure-release boundaries. A cylindrical coordinate 

system is used with 2 axis running along the apex 

of the wedge as illustrated in Fig. 2. On applying 

a sequence of three integral transforms (a finite 

Fourier sine transform over angular depth 仇 a 

Hankel transform over range r, and a Laplace tr­

ansform over cross-range n) to Eq. 1 a triply trans­

formed version of the fi시d is obtained. The field 

itself is then found by taking the corresponding 

three inverse transforms. The final res니It is

£ L3, r \ 2, cu) sinuO sinv(f, (2)

where 仇｝ is the wedge angle, co is the angular fre­

quency, (r, 0, z) are the receiver coordinates and 

(r \ 0()) are the so니rce coordinates and we set 

wlicrc i - \ 1, Jv is the Bessel function of the 

lli OL kllid Ui Oi del V ctllCl

° \ k2 - p-. (5)

The wavenumber k is defined as & = cd/(\ with 

(' the speed of sound in the medium contained in 

the wedge.

Eqs. 2 and 4 for the time harmonic fi시d are ex­

act, and valid for any wedge angle. Thus, this sol­

ution includes both the image component and the 

diffracted component of the time-harmonic field. 

The fi이d due to an impulsive source is found by 

taking the inverse Fourier transform of Eq. 2. 

This involves an inversion integral over angular 

frequency, e, which is a known formLil]:

—r — 

2,71 J - / rj

=iCuU ~ z)(' )Jp \ C212 一 z，) (6)

where u is the unit step function. With 나le aid of 

this result, the transient field in the wedge can 

be expressed as

Q 〜
^=— £ I Ar, r、z, t) sin^sin 卬
仇)-

(7)

where 0 is the velocity potential of the fi시d gen­

erated by the impulsive source, and

r2, t) = —Cu(t-z/C)

mv.
= 1, Z. 3,… (3) PJtSP <C-t' 一 2- ) J^pr) J J"). (8)

(1

where m is the mode number, and the summation 

in Eq. 2 is over all values of m. The mode coef­

ficient h is a function of range and cross-range, 

but not of angular depth, since this has been se­

parated out and appears only in the eigenfunct­

ions. L is given by the infinite integral

Eqs. 7 and 8 are exactly the same as the result 

for the transient field derived by Biot and Tolstoy 

[6] using the method of normal coordinates (ex­

cept that their eigenfunctions are cosines rather 

that sines, because they considered the case of 

rigid boundaries). Since the properties of Eqs. 7 
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⑴E 8 for t.he impulsive fi시d have been explored 

fully in Ref. H ] they will not be further discussed 

here.

The tigonornetric cigenfuntions in Eq. 2, rep­

resenting the modesthe wedge, are shown for 

m - 1. 2, 3 in Fig. 3. The number of extrema m 

each mode function is equal to the mode number, 

m. Note that the surfaces of constant phase are 

cylinders which are coaxial with the apex of the 

wedge. An elegant tank experiment recently repor 

ted by Tindle et 시[12] confirmed that such cylin­

drical wavefronts are indeed observed in practice.

in - 1 I it = 2 = ........

Figure 3. Mode shapes in angular direction for the first 

three modes.

The entire range and closs-range dependence of 

each of the modes is given by the mode coefficient 

equation. This coefficient for the time-harmonic 

field given by the integral in Eq. 4, has been 

examined in detail in Ref. [1] for wedge angles 

which are sub-multiples of n (i.e. u an integer). 

This condition corresponds to the case where only 

the image component of the fi이d is present, the 

diffracted component being identically zero. Cen- 

tral to the analysis was the transform of the infi­

nite integral on Eq. 4 to a finite integral, using 

the Bessel function identity] 13]

jSPrSPr，^ = — I J()(P x/r2 + r，2 —2rr，cos(7 ) 

兀J 0

cos(vo-) da. (9)

This identity, derived from one of the Bessel 

function addition theorem, is valid only when p is 

an integer. Thus, the convertion from an infinite 

to a finite integral in Ref. |_ 1 j was the mathemat 

ical process that excluded the diffracted fi이d 

from the analysis. If the diffracted fi이d is to be 

included, that is if v is permitted to be fractional, 

Eq. 9 must be abandoned in favor of a more gen­

eral formulation.

ID. Generalized Analysis of 하治 Field

E이，2 and 4 represent a complete, exact solut 

ion for the time-harmonic field in the wedge for 

any wedge angle. The depth dependence represent 

ed by the eigenfunctions is straightforward, but 

the infinite integral for the mode coefficients in 

Eq. 4 is not tractable and does not provide much 

physical insight into the (r, z) dependence of the 

field. In the following analysis, we convert this 

integral to another form which is more manage­

able, using an argument which is a generalized 

version of that used in Ref. [ 1 ] for the case of p 

an integer.

We begin by writing the order of the Bess이 fun­

ctions in the integrand of Eq. 4 as the sum of an 

integer, n and a fraction,卩:

卩=_?芸£ =茬 + ”. (10)

Then for unrestricted real values of v, the Bes­

sel function product in the integrand of the mode 

coefficient integral is given by the following id- 

entity[13]

JSpr)Jv(pr')=
如！「（穴）（力尸）“0切 

几아"「（死+ 2卩）

지辭) C^(coscr)

0 Ri

(11)

v^iere r is the gamma function, C^(cos(r) is the Ge- 

genbauer polynomial and

Ri = \ r^-\-r，2~2rr' cose . (12)

When the term on the right of Eq. 11 is substi­
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tute into Eq. 1, the expression for /. takes the form 

of a double integral. One of thpse integrals, over 

j.'i :ntin;te range of '.'?ir;abic p. 土、"刃「疽"•

* /- ©辺⑵

Z가'—— "3R\)dD.
o U

(13)

On expanding the exponential function in the 

integrand in terms of the modified Bessel func­

tion K丄,this integral becomes a known form] 13].
2

The event니al result for the mode coefficient is 

shows distinctive features m the (，广，z) plane whicli 

are flue to hmrzcnt시 refraction cau<ed by repeated 

，、:fk、二.m Mm;, ■ .he i：島代：：e、、 

veguide. These features include acoustic shadow­

ing m tne horizontal and mtra-mode interference 

L14. 15],

Returning now to Eq. 14, we see that the in­

tegrand contains a Hankel function of low order 

(侬+1/21 Ml), and the Gegenbauer polynomial 

(cos(t), it is convenient to replace the latter by 

the flowing finite series[ 16]:

쓰匚囲j = _ J 呈---- —(2rr')^ kh + ^「
L V 8n 「(〃 +財 h C^(coscr)=切

r(^ + m)r(^ + ^—m) 
m\ (n — m)!

cos(n-2m)a.

(18)

H界丄(秘2)

― ；+1/2— C^(cosct) sin办血, (14)
^2 

where H斜+ is the Hankel function of the second 

kind of order 乂 + 4 . The parameter R> appearing 

in the integrand is given by

Rz = R()VT~ 2(zcos(7

R()= vr2 + r，2 + z2 (15)

rr'
a=~^

Eq. 14 is an exact expression for the mode coef­

ficient Iu, involving a finite integral rather than an 

infinite integral as in Eq. 4. By using the limiting 

relationship

lim r(u) (/I + w) C^(coso-) = 2cos m丁， (16)
/<-*()  

it is fairly easy to show that when 以一H丄 Eq. 14 re­

duces to

] p 0 -ikRi
lim h=一 coswct一-一 da, 
“Tl 71 JO A2

(17)

Mich is the correct result for wedge angles which 

are submultiples of n. Eq. 17 represents the field 

in the wedge due to a finite number of images. It 

Using the expression to evaluate the Gegenbauer 

polynomials, the mode coefficient in Eq. 14 can 

be computed efficiently. By performing the mode 

sum in Eq. 2 the full harmonic field in the wedge 

may be calculated exactly.

IV, Numerical Examples

We shall primarily look at the total field beha­

vior when the wedge angle is not a submultiple of 

it. First, the dependence of the total field, which in­

cludes the diffraction component, along the range 

and apex direction will be shown. Then the ang니- 

lar dependence of the field will be investigated 

for the case when 仇广=* zt (ridge case).

The dependence of the field along the radial di­

rection, when other parameters are fixed, will ex­

hibit a decay inversely proportional to \r—rf\ as 

can be seen from Eq. 14. Fig. 4 shows the magni 

tude of the mode coefficient, | /J. for the first 

mode when 仇)=号 兀，k = 1.0, z = 0 and y ‘ = 1000 

(m). The field decaying away from the source 

point at x= 1000(m) is evident and the field is in­

creased in the vicinity of the apex which is due to 

the diffracted component. Due to the interaction 

of diffracted wave propagating away from the 

apex and the wave originating from the source
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Figure 4. Field variation along the radial direction for a 

ridge problem, f扁=-270°, k = \、丫 = 1 x 10\ z 

=0.

which is propagating towards the apex, the oscil­

lating fi이d is generated within the sector be­

tween the apex and the source. Beyond that sec­

tor, the interaction of both waves which happen 

to propagate in coherent direction produces smo­

oth fi이ds. The mode coefficients for other modes 

will be similar to that of the first mode.

The field variation along cross range, when so­

urce and receiver ranges are fixed, reflects the 

modal butterfly pattern for all wedge angles. This 

is due to the refraction of rays as they reflect off 

the boundary surfaces of the wedge. Fig. 5 show 

the magnitude of the mode coefficient, 141, 

for the 1st mode when the wedge angles are 2° 

and 2.01°, respectively. Other parameters are 

shown in the figure. When the wedge angle is 

small, the diffracted component is seen to be of 

negligible am。니nt as can be seen from the com­

parison of the two and the field decays quite rap­

idly above the caustic point. There is a little dif­

ference of the field near z = 0 point due do the 

diffracted component. Fig. 6 shows the modal 

butterflies for modes 1, 2, 3 and 4 for the case of 

a ridge with = g 几 The field decay beyond the 

caustic is procrastinated due to void of refraction 

when the wedge angle becomes larger than n.

The angular dependence of the field by a ridge 

with an external angle of 仇)=is given as a fi­

nal example. The acoustic field is calculated from 

Eqs. 2, 14 and 18. The results are shown as polar

Figure 5. Field variation along the shoreline direction 

for a wedge problem.为=1, r = lx 10*. r'= 

400. (a) 2° and (b)% = 2.01°.

diagrams for the absolute value of the velocity po­

tential, |。|, as a function of angular depth of the 

receiver 6. pig. 7 shows the field over a ridge for 

four source positions. The fixed parameters are as 

follows ; k = Im-1, r = 400m, r，= 10,000m and 2 = 

5000m. Since larger angles support more modes six 

hundred modes were used in the computation of 

the fi이d. The field containing reflected compon­

ents shows very sharp peaks and troughs, whilst 

the region with direct and diffracted components 

is somewhat smoother, with broader peaks and 

shallower troughs. Due to relatively high wavenu­

mber, the diffracted component is almost negli­

gible in this case. When = 1.0X 10-4m-1, r = 

10m, rr = 100m and z = 0m (Fig. 8), the diffract­

ed component becomes noticeable. 10 modes were 

used altogether for the computation of the field.
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Fig니re 6. Field variation along the apex direction for 

the first 4 modes in a ridge problem, 허 = 270°, 

k - 1. r-1X101, r ' - 400.
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direc!

• refirdion

(a)

(c)

(d) (d)
Fig니re 7. Polar diagram of the field for four different so­

urce positions when 伽= 270",冷=1, r = 400, 

r'=lxlQ\，z = 5xl03：(a)/=i。，(b)0z = 45°, 

(c)f9' = 9O° and (d) = 135°. The small dia­

gram to the right shows the components that 

contribute to the total field in different sect­

ors. The asterisk indicates the source position. 

Figure 8. Polar diagram of the field for four different 

source positions when 伽= 270°, = 1X104, r 

= 10,尸’=100, z = 0 : (a) 0，= 1°, (b)0' = 45°, 

(c) 0' = 90° and (d)矿=135°.
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\ . Summary and Conclusion

i'he ： rieorv presented above gives the total 

fi이d in a wedge or over a ridge due to a time­

harmonic point source. The final expression for the 

fi이d consists of an infinite sum of normal modes. 

It is exact, involving no approximation, where the 

mode coefficients are expressed as a finite inte­

gral involving Hankel functions and Gegenbauer 

polynomials.

In ocean acoustics, the theory described above 

may find application in connection with propagat­

ion over ridge-like seamounts, where scattering 

from the apex is significant. It may also be rel­

evant to the problem of acoustic scattering from 

the ice canopy in the arctic ocean, since ice keels 

of various dimensions, resembling inverted ridges, 

are a characteristic feature of the ice.
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