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Theory of Acoustic Propagation in 3 Dimensional Wedge Domain
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ABSTRACT

Three components contribute to the acoustic field propagating in a wedge or over a ridge : a direct path arrival, an
image component due to reflection from the boundaries and a component diffracied by the apex. All three
contributions are included in a new, exact solution of the Helmholtz equation for the three-dimensional time har-
monic field from a point source 1n a wedgefor over a ridge) formed by two intersecting, pressure-release plane
boundaries. The solution is obtained by applying three imtegral transforms, and consists of an infinite sum of
uncoupled normal modes. The mode coefficients aie given by a finite integral involving a Gegenbauer polynomial in
the integrand. which may be computed relatively efficiently. Results of the theory for propagation over a 90 degree

ridge is discussed.
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I . Introduction cludes an image component of the field and a dif-

fracted component arising from scattering at the

In this paper an exact solution is developed for
the acoustic field generated by a harmonic point
source in an infinite wedge-shaped ocean, formed
by two perfectly reflecting planes which intersect
along the line of the apex. The new solution in
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apex. although emphasis is given in the discus
sion to the diffracted field since the normal modes
assoctated with the image have been examined at
length elsewheref1]. The analysis is presented in
the context of ocean wedges and ridges, but obvi-
ously has wider application.

It is well known that when the wedge angle 9,
(Fig. 1a) is a submultiple of n{i.e. n divided by an
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mteger) there s no diffraction from the apex of
the wedge' 1. 2], In general however. when the
wedge angle & not a sub-multiple of n, diffraction
from the apex does occur, although it may or mav
nol be of significance. For a small wedge angle.
say on the order of 2°(which is typical of the con-
tinental slope) diffraction effects are negligible
even when f is not precisely a sub-mutiple of =,
As the wedge angle increases, diffraction from
the apex gains in significance, becoming a pre-
dominant factor when 6, exceeds n(Fig. 1b). Su-
ch large-angle wedges, with 6,> n, are represen-
tative of the mid-ocean ridges and other ridge-

like structures on the sea tloor,

(b)

Figure 1. Schematic diagram for (a) wedge and (h)rid-
ge problem,

Diffraction in wedges was first discussed by Som-
merfeld(3) at the turn of the century. Since then
an extensive hterature has accumu[ated Qn acous-
tics and electromagnetics fields in wedge-like do-
mains, In connection with acoustics, an exact sol-
ution in terms of normal modes was derived by
Bradley and Hudimac[4] and examined by Graves
et al{5]:and diffraction of a spherical transient
by the apex of a wedge was addressed by Biot and

Tolstoy{6] using the method of normal coordinat
es. Buckingham derived an exact solution for the
case of a wedge void of diffraction component| )]
and with diffraction component{7] which is expr
essed as an infinite integral. More recently, sev-
eral numerical solutions of the wedge problems
have appeared, based on the parabolic equation
approximation[ 8], normal mode theory[9] and fi-
nite difference method[10], However, these nu-
merical methods are approximate solutions with
inherent assumptions in the development stages

or its implementation.

The starting point of the analysis presented here
is the general expression for the field produced
by a harmonic source in a perfect wedge derived
by Buckingham[1]. This result, which is obtained
from the inhomeogeneous Helmholtz equation, is ex-
act throughout the wedge-shaped domain includ-
ing the source point. The solution is expressed in
cylindrical coordinates{Fig. 2), with the z axis run-
ning along the apex of the wedge. As we shall
show, the field consists of an image contribution
{although image theory is not invoked in deriving
the solution) and a diffracted component. By Fo-
urier transforming our resuit for the CW field
back into the time domain, it can be shown to be
consistent with the impulsive field in a wedge de-
rived by Biot and Tolstoy[6].
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Figure 2. Cylindrical coordinate system.,



1. The Time-Harmonic Field

When the wave equanion with an unpulsive so
urce term 15 Fourier transformed with respect to
time, it becomes the inhomogenecus Helmholtz

equation ;
Tigt kg Q8 -1, {1

where - is the Laplacian, ¢ 1s the Fourier trans-
form of the velocity potential ¢f the flwd, %1s the
wavenumber, (}is the source strength, 41s the Dir-
ac delta function, and 7 and 7 are the receiver
and the source points. respectively. For the case
of a wedge with two perfectly reflecting bound-
aries, an exact solution for ¢ can be obtained in
the form of a sum of normal modes. This solution
has been derived in Ref [ 1] for a wedge with pres-
sure-release boundaries, A cylindrical coordinate
system is used with z axis running along the apex
of the wedge as illustrated in Fig. 2. On applying
a sequence of three integral transforms (a finite
Fourier sine transform over angular depth #, a
Hankel transform over range », and a Laplace tr-
ansform over cross-range 2) to Eq. 1 a triply trans.
formed version of the field is obtained. The field
itself is then found by taking the corresponding
three inverse transforms, The final result is
¢=;—” C Lir, 7', 2, ) sined sinug’, (2)
T

where 8,15 the wedge angle, w is the angular fre-
quency, (7, ¢, z) are the receiver coordinates and
{r . 0. 0} are the source coordinates and we set

mnr

—_— =], ,f 3‘ cea (3]
Y m ]

v
where m is the mode number, and the summation
in Bq.2 is over all values of m The mode coef-
ficient f, is a function of range and cross-range,
but not of angular depth, since this has been se-
parated out and appears only in the eigenfunct-
ons, 7, is given by the infinite integral
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The wavenumber % is defined as £ = w/(’, with
¢’ the speed of sound in the medium contained in
the wedge.

Egs. 2 and 4 for the time harmonic field are ex-
act, and valid for any wedge angle. Thus, this sol-
ution includes both the image component and the
diffracted component of the time-harmonic field.
The field due to an impulsive source is found by
taking the inverse Fourier transform of Eq. 2.
This involves an inversion integral over angular
frequency, w, which s a known form[11] :

1 |

— - e!ulzieiw!d{u
2n 7

-4

=iCutt=2fC) NI = 20, (6)

where # Is the unit step function. With the aid of
this result, the transient field in the wedge can

be expressed as

=Y <
¢ & =

iy, #', z ) sinvd sinuvd’, (7)
where ¢ is the velocity potential of the field gen-
erated by the impulsive source, and

Tir, 7' 2z, )= —Cult~z/C)
f Pfukp\"'(lzf'J - 2" Y Apry ] ipri). (8)
1]

Egs. 7 and 8 are exactly the same as the result
for the transient field derived by Biot and Tolstoy
(6] using the method of normal coordinates {ex-
cept that their eigenfunctions are cosines rather
that sines, because they considered the case of
rigid boundaries). Since the properties of Egs. 7
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and w fur the impulsive field have heen explored
fully 1in Ref. 61 they will not be further discussed
neTe.

The tigonometne cigenfuntions in £q. 2, rep-
resenting the modes in the wedge. are shown for
w12, 3 in Fig. 3. The number of extrema in
each mode function is equal to the mode number,
. Note that the surfaces of constant phase are
cylinders which are coaxial with the apex of the
wedge. An elegant tank experiment recently repor
ted by Tindle et al{ 12] confirmed that such cylin-

drical wavefronts are indeed observed in practice,

Figure 3. Mode shapes in angular direction for the first
three modes.,

The entire range and closs-range dependence of
each of the modes is given by the mode coefficient
equation. This coefficient for the time-harmonic
field given by the integral in Eq. 4, has been
examined in detail in Ref [1] for wedge angles
which are sub-multiples of r {i.e, v an integer).
This condition corresponds to the case where only
the image component of the field is present. the
diffracted component being identically zero. Cen-
tral to the analysis was the transform of the infi-
nite integral on Eq. 4 to a finite integral, using
the Bessel function identity[13]

Sl j lpr) = % ft_.-"u()ﬁ N =277 cosa)
4]
cosfve) do. (9}

This identity, derived from one of the Bessel

function addition theorern, is valid only when v is

an integer, Thus, the convertion from an infinite
to a finite integral in Ref.| 1] was the mathemat
ical process that excluded the diffracted field
from the analysis. If the diffracted field is to be
included, that 1s if v is permitted to be fractional,
Eq. 9 must be abandoned in favor of 4 more gen-
eral formulation,

M. Generalized Analysis of the Field

Egs, 2 and 4 represent a complete, exact solut
ion for the time-harmonic field in the wedge for
any wedge angle, The depth dependence represent-
ed by the eigenfunctions is straightforward. but
the infinite integral for the mode coefficients in
Eq. 4 is not tractable and does not provide much
physical insight into the (», z) dependence of the
field. In the following analysis, we convert this
integral to another form which is more manage-
able, using an argument which is a generalized
version of that used in Ref.[1] for the case of v
an integer,

We begin by writing the order of the Bessel fun-
ctions in the integrand of Eq. 4 as the sum of an
integer, » and a fraction, u :

v=2E =ty (109
i

Then for unrestricted real values of », the Bes-
se} function product in the integrand of the mode
coefficient integral is given by the following id-
entity[13]

n! T{u) (pr)e (pr’)*
a2 AT (n+2p)

Jpr)f (pr) =

jﬂ j—’(‘t:,l') Crlcose) sin*ado,
o R

{11)
where I 1s the gamma function, (' 4(cosa) is the Ge-
genbauer polynomial and

Ri=~ri+7"2=2rr cose . (12)

When the term on the right of Eq. 11 is substi-
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tute into Fay. 4, the expression for /, takes the for

of a double integral One nf thees integrale nver

b WS BN . .
Bk s [t

2. i+!eimz| )
fﬂ P T pk0dp. (13)

On expanding the exponential function in the
integrand in terms of the modified Bessel func-
tion Ky, this integral becomes a known form{13].
The eventual result for the mode coefficient is

1 2T (u)

J—— II._ ———— Y #"“i‘ .
= V 8n Fln+2y) (2rr )k f

b
H'ﬂ.{ (kE>)

e Chleose) sin**¢do, {14)

where H77\ 1 is the Hankel function of the second
kind of order u +,l_, . The parameter R. appearing
in the integrand is given by

Ri=Vri+ri427 {15}
ry’

a=— .
Ry

Eq. 14 is an exact expression for the mode coef-
ficient 7,, involving a finite integral rather than an
infinite integral as in Eq. 4. By using the limiting
relationship

lim T{p){u+n)C){coso) =2cosne. (16}

Fiaatt]

it is fairly easy to show that when p—0. Eq. 14 re-

duces to

1 r e—ikh’:
lim {,=— cosng o (17}
=0 noJo R

which is the correct result for wedge angles which
are submultiples of a. Eq. 17 represents the field
in the wedge due to a finite number of images. [t

shows distinctive features in the (r, of plane winch

are due to horizantal refraction consed by repeared

sotloean i tha swhncd Dt s o e s
veguide, These teatures include acoustic shadow-
g In the horizontal and intra-mode interference
‘11, 151

Returning now to Eq. 14, we see that the in-
tegrand contains a Hankel function of Jow order
{|p+1/21<1), and the Gegenbauer polynomial (',
(cosa), it is convement to replace the latter by

the following fimite series| 16]

cosin—2ma.
(18}

CHleose) = 5 ClipgtmlTig+n-—m
" o THdmlin—m)!

Using the expression to evaluate the Gegenbauer
polynomials, the mode coefficient in Eq. 14 can
be computed efficiently, By performing the mode
sum in Eq. 2 the full harmonic field in the wedge

may be calculated exactly.

I¥. Numerical Examples

We shall primarily look at the cotal field beha-
vior when the wedge angle is not a submultiple of
n. First, the dependence of the total field, which in-
cludes the diffraction component. along the range
and apex direction will be shown. Then the angu-
lar dependence of the field will be investigated
for the case when 8,= % r {ridge case).

The dependence of the field along the radial di-
rection, when other parameters are fixed, will ex-
hibit a decay inversely proportional to [»—»’| as
can be seen from Eq. 14. Fig. 4 shows the magni-
tude of the mode coefficient. 17,1, for the first
mode when 6,== x, k=1.0, z=0and ' =1000
{m). The field decaying away from the source
point at » = 1000(m) is evident and the field is in-
creased in the vicinity of the apex which is due to
the diffracted component. Due to the interaction
of diffracted wave propagating away from the
apex and the wave originating frem the source
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Figure 4. Field variation along the radial direction for a
ridge problem, f, - 270% k=1, r'=1x10% 2
=),

which is propagating towards the apex. the oscil-
lating field 1s generated within the sector be.
tween the apex and the source. Beyond that sec-
tor, the interaction of both waves which happen
to propagate 1n coherent direction produces smo-
oth fields. The mode coefficients for other modes
will be similar to that of the first mode.

The field vanation along cross range, when so-
urce and receiver ranges are fixed, reflects the
modal butterfly pattern for all wedge angles. This
15 due to the refraction of rays as they reflect off
the boundary surfaces of the wedge, Fig. 5 show
the magnitude of the mode coefficient, nRy|f.|.
for the 1st mode when the wedge angles are 2°
and 2.01°, respectively, Other parameters are
shown in the figure, When the wedge angle is
small, the diffracted component is seen to be of
negligible amount as can be seen from the com-
parison of the two and the field decays quite rap-
idly above the caustic point. There is a little dif-
ference of the field near z=0 point due do the
diffracted component, Fig. 6 shows the modal
butterflies for modes 1, 2, 3 and 4 for the case of
a ridge with 8,= % 7. The field decay beyond the
caustic is procrastinated due to void of refraction

when the wedge angle becomes larger than r.
The angular dependence of the field by a ndge

with an external angle of 8, == % 7 1s given as a fi-

nal example. The acoustic field is calculated from
Egs. 2. 14 and 18. The results are shown as polar

o
60000

(b)

Figure 5. Field variation along the shareline direction
for a wedge problem. k=1, r=1Xx10, r =
400. {a) 6r=2"and (b) §,=2.01".

diagrams for the absolute value of the velocity po-
tential, |@}, as a function of angular depth of the
receiver 8. Fig. 7 shows the field over a ridge for
four source positions, The fixed parameters are as
follows : k= 1m™}, »=400m, » ' =10,000m and z =
5000m. Since larger angles support more modes six
hundred modes were used in the computation of
the field. The field containing reflected compon-
ents shows very sharp peaks and troughs, whilst
the region with direct and diffracted components
is somewhat smoother, with broader peaks and
shallower troughs. Due to relatively high wavenu-
mber, the diffracted component is almost negli-
gible in this case, When 2=1.0x10"'m™, r=
10m, »*=100m and 2=0m (Fig. 8), the difrract-
ed component becomes noticeable, 10 modes were
used altogether for the computation of the field.
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Figure 6. Field variation along the apex direction for
the first 4 modes in a ridge problem. &, = 270°,
ke bor=1X10Y r = 400.
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Figure 7. Polar diagram of the field for four different so-
urce positions when &= 270°, k=1, » = 400,
¥ '=1x10% z=5x10*:{a)8'=1°, (b)# =45,

(c} @ =90° and (d)@# =135", The small dia-

gram to the right shows the components that
contribute to the total field in different sect-
ors. The asterisk indicates the source position.
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(d)

Figure 8. Polar diagram of the field for four different
source positions when 8,=270°, £=1X10% »
=10, r =100, z=0:{2)8'=1°, (b)# =45
()8 =90 and (d) 6 =135".
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V. Summary and Conciusion

Phe theory presented anove @ves tne tetal
field in a wedge or over a ridge due to a time-
harmonic point source. The final expression for the
field consists of an infinite sum of normal modes,
It 15 exact. Involving no approximation, where the
mode coefficients are expressed as a finite inte-
gral involving Hankel functions and Gegenbauer
polynomials,

In ocean acoustics, the theory described above
may find application in connection with propagat-
ion over ridge-like seamounts, where scattering
from the apex is significant. [t may also be rel-
evant to the problem of acoustic scattering from
the ice canopy n the arctic ocean, since ice keels
of various dimensions, resembling inverted ridges,
are a characteristic feature of the ice.
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