• Title/Summary/Keyword: Acoustic Energy Density

Search Result 72, Processing Time 0.033 seconds

Reliability and utility of a Dry Test Bench for testing the acoustic output from a ballistic shock wave therapeutic device (탄도형 충격파 치료기의 음향 출력 시험을 위한 Dry Test Bench의 신뢰성 및 유용성)

  • Jeon, Sung Joung;Lee, Min Young;Kwon, Oh Bin;Kim, Jong Min;Choi, Min Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.5
    • /
    • pp.589-600
    • /
    • 2022
  • In order to verify the reliability of Dry Test Bench (DTB) used for testing the output energy from ballistic extracorporeal shock wave therapeutic devices, the measurements with DTB were compared with the acoustic energy measured with a Laser Doppler Vibrometer (LDV) for a commercial ballistic ESWT device. It was shown that the mechanical energy detected with DTB had variability maintained within 5 % at the same output power setting and also had a linear correlation (adj. R2 = 0.991) with the acoustic energy measured with the LDV for the entire output power settings. Using the correlation between the two methods and the correlation on the acoustic energy measured in between air and water with the LDV, the DTB measurement can be used to estimate the energy flux density in water with an average error of 7.85 % for the entire output power settings of the ballistic shock wave generator considered in the experiment. DTB provides information limited to the output mechanical energy and therefore it is not suitable for testing the various acoustic output parameters required in IEC61846 and IEC63045. However, DTB that is simple in measurement principles and easy to use is expected for manufacturers and clinical users to monitor the performance of ballistic Extracorporeal Shock Wave Therapy (ESWT) devices.

Acoustic Control of Optional Space Using Optimum Location of Absorbing Material (흡음재 최적배치를 이용한 임의 공간의 음향제어에 관한 연구)

  • 김동영;홍도관;안찬우
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.10
    • /
    • pp.1048-1054
    • /
    • 2004
  • The Passive acoustic control is used in various fields, such as structures, automobiles, aircraft and so on. It is used in variety of acoustic field with the absorbing material, as one of the methods which can control the acoustic in optional space. In that case of passive control using this absorption material, it would be important to maximize the control performance of material property, numbers, geometry shape and the attached location of boundary area of the absorbing material. But realistically these variables, specially material Property, have no broad choice. Therefore, the position of absorbing material is the most important variable. In this study, we use the optimization method to minimize acoustic energy of optional space in the interest frequency attaching some absorbing materials to the boundary area. For analysis and optimization, this study uses the FEA and the conjugate gradient method. This optimization process is very efficient and useful in the passive acoustic control.

Improvement of Reverse-time Migration using Homogenization of Acoustic Impedance (음향 임피던스 균질화를 이용한 거꿀시간 참반사보정 성능개선)

  • Lee, Gang Hoon;Pyun, Sukjoon;Park, Yunhui;Cheong, Snons
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.2
    • /
    • pp.76-83
    • /
    • 2016
  • Migration image can be distorted due to reflected waves in the source and receiver wavefields when discontinuities of input velocity model exist in seismic imaging. To remove reflected waves coming from layer interfaces, it is a common practice to smooth the velocity model for migration. If the velocity model is smoothed, however, the subsurface image can be distorted because the velocity changes around interfaces. In this paper, we attempt to minimize the distortion by reducing reflection energy in the source and receiver wavefields through acoustic impedance homogenization. To make acoustic impedance constant, we define fake density model and use it for migration. When the acoustic impedance is constant over all layers, the reflection coefficient at normal incidence becomes zero and the minimized reflection energy results in the improvement of migration result. To verify our algorithm, we implement the reverse-time migration using cell-based finite-difference method. Through numerical examples, we can note that the migration image is improved at the layer interfaces with high velocity contrast, and it shows the marked improvement particularly in the shallow part.

Direct Simulation of Acoustic Sound by the Finite Difference Lattice Boltzmann Method (차분격자볼츠만법에 의한 유체음의 직접계산)

  • Kang, Ho-Keun;Ro, Ki-Deok;Lee, Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1827-1832
    • /
    • 2003
  • In this research, the simulation method for acoustic sounds by a uniform flow around a two-dimensional circular cylinder by using the finite difference lattice Boltzmann model is explained. To begin with, we examine the boundary condition which determined with the distribution function $f_i^{(0)}$ concerning with density, velocity and internal energy at boundary node. Very small acoustic pressure fluctuation, with same frequency as that of Karman vortex street, is compared with the pressure fluctuation around a circular cylinder. The acoustic sound' propagation velocity shows that acoustic approa ching the upstream, due to the Doppler effect in the uniform flow, slowly propagated. For the do wnstream, on the other hand, it quickly propagates. It is also apparently the size of sound pressure was proportional to the central distance $r^{-1/2}$ of the circular cylinder. The lattice BGK model for compressible fluids is shown to be one of powerful tool for simulation of gas flows.

  • PDF

Harvesting energy from acoustic vibrations of conventional and ultrasonic whistles

  • Hattery, Rebecca;Bilgen, Onur
    • Smart Structures and Systems
    • /
    • v.19 no.6
    • /
    • pp.615-624
    • /
    • 2017
  • This paper experimentally investigates the feasibility of harvesting vibration energy from whistles using piezoelectric materials. The end goal of this research is to generate sufficient power from the whistle to power a small radio transmitter to relay a basic signal - for example, a distress call. First, the paper discusses the current literature in energy harvesting from acoustic resonance. Next, the concept of an active whistle is presented. Next, results from energy harvesting experiments conducted on conventional and ultrasonic whistles undergoing human-actuation and actuation by a pressure-regulated air supply are presented. The maximum power density of the conventional whistle actuated by a human at 100 dB sound pressure level is $98.1{\mu}W/cm^3$.

Acoustic outputs from clinical ballistic extracorporeal shock wave therapeutic devices (임상에서 사용중인 탄도형 체외충격파 치료기의 음향 출력)

  • Cho, Jin Sik;Kwon, Oh Bin;Jeon, Sung Joung;Lee, Min Young;Kim, Jong Min;Choi, Min Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.5
    • /
    • pp.570-588
    • /
    • 2022
  • We scrutinized the acoustic outputs from the 70 shock wave generators of the 15 product models whose technical documents were available, among the 46 ballistic extracorporeal shock wave therapeutic devices of 11 domestic and 6 foreign manufacturers, approved by the Minster of Food & Drug Safety (Rep. Korea). We found that the acoustic Energy Flux Density (EFD), the most popular exposure parameter, was different by up to 563.64 times among shock wave generators at their minimum output settings and by up to 74.62 times at their maximum settings. In the same product model, the EFD was shown to vary depending on shock wave transmitters by up to 81.82 times at its minimum output setting and by up to 46.15 times at its maximum setting. The lowest EFD 0.013 mJ/mm2 at the maximum output settings was much lower (2.1 %) than the maximum value 0.62 mJ/mm2 at the minimum settings. The Large acoustic output differences (tens to hundreds of times)from the therapeutic devices approved for the same clinical indications imply that their therapeutic efficacy & safety may not be assured. The findings suggest the regulatory authority to revise her guideline to give clearer criteria for clinical approval and equality in performance, and recommend the authority to initiate a post-approval surveillance as well as a test in conformance between the data in technical documents and the real acoustic outputs clinically used.

Research on Vibro-acoustic Coupled Analysis using Power Flow Finite Element Method (파워흐름유한요소법을 이용한 진동음향 연성해석 연구)

  • Kim, Sung-Hee;Kwon, Hyun-Wung;Hong, Suk-Yoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.767-770
    • /
    • 2006
  • To predict vibrational energy density of simple structural-acoustic coupled systems in medium-to-high frequency ranges, Power Flow Finite Element Method(PFFEM) is used, and PFFEM sofiware, PFADS has been developed for the vibration predictions and analysis of coupled system structures in medium-to-high frequency ranges. However, it needs to consider vibro-acoustic coupled analysis to get more accurate results. Prior to implement vibro-acoustic coupled analysis functions in PFADS, research on vibro-acoustic coupled analysis using PFFEH is performed for simple models. These predictions include the indirect transmission path associated, and also the direct transmission path, and the formulation is extended to structural system model by using appropriate modifications to structural-acoustic and acoustic-acoustic joint matrices. Concerning the waves in plate and acoustic, it is possible to calculate the structural-acoustic full matrix of a model using PFFEM, and the formulations developed are implemented for two rooms surrounded by plates.

  • PDF

Structural Integrity Analysis of Underwater Acoustic Sensors due to Underwater Explosion (수중폭발에 의한 센서의 구조건전성 해석)

  • Jung, Jae-Deok;Hong, Suk-Yoon;Kil, Hyun-Gwon;Song, Jee-Hun;Kwon, Hyun-Wung;Jeon, Jae-Jin;Seo, Youngsoo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.7
    • /
    • pp.597-604
    • /
    • 2013
  • Underwater acoustic sensors are significantly damaged from underwater explosion. The damage that affects sensor should be evaluated for its smooth operations and safety. For satisfying these objectives, it is necessary to obtain more accurate values of the pressure and the energy flux density by distance. This paper is divided into two part. First, to obtain more accurate value of the pressure and the energy flux density at each point, the simulation results and the reference values were compared. For fitting to the reference pressure and the reference energy flux density, the sizes of fluid and TNT model are corrected, and the comparison results show good agreements. Second, based on these results, the structural integrity of underwater sensor structure was analyzed when TNT located in 10 meters from underwater sensors structure. This simulation used the commercial software MSC/DYTRAN.

Damage characterization of hard-brittle rocks under cyclic loading based on energy dissipation and acoustic emission characteristics

  • Li, Cheng J.;Lou, Pei J.;Xu, Ying
    • Geomechanics and Engineering
    • /
    • v.31 no.4
    • /
    • pp.365-373
    • /
    • 2022
  • In order to investigate the damage evolution law of rock specimens under cyclic loading, cyclic loading tests under constant loads with different amplitudes were carried out on limestone specimens with high strength and brittleness values using acoustic emission (AE) technology and the energy evolution and AE characteristics were evaluated. Based on dissipated energy density and AE counts, the damage variable of specimen was characterized and two damage evolution processes were analyzed and compared. The obtained results showed that the change of AE counts was closely related to radial deformation. Higher cyclic loading values result in more significant radial strain of limestone specimen and larger accumulative AE counts of cyclic loading segment, which indicated Felicity effect. Regarding dissipated energy density, the damage of limestone specimen was defined without considering the influence of radial deformation, which made the damage value of cyclic loading segment higher at lower amplitude loads. The damage of cyclic loading segment was increased with the magnitude of load. When dissipated energy density was applied to define damage, the damage value at unloading segment was smaller than that of AE counts. Under higher cyclic loading values, rocks show obvious damage during both loading and unloading processes. Therefore, during deep rock excavation, the damages caused by the deformation recovery of unloading rocks could not be ignored when considering the damage caused by abutment pressure.

Real time measurement of an acoustic stream by a visualization technique, PIV (PIV(Particle Imaging Velocimetry)에 의한 음향류의 실시간 가시화 계측)

  • 도덕희
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06c
    • /
    • pp.239-242
    • /
    • 1998
  • A new real time sound field visualization technique is introduced in this study using PIV(Particle Imaging Velocimetry) technique. Small particles of which density is small enough to follow up the air flow are used for sound visualization. When the driving frequency is in the vicinity of the resonance frequency of the simplified 2-dimensional muffler system, an acoustic streaming is shown and of which velocity distribution is obtained through PIV technique. It is experimentally proved that the present technique is able to visualize and quantify the sound field's energy flow.

  • PDF