DOI QR코드

DOI QR Code

Harvesting energy from acoustic vibrations of conventional and ultrasonic whistles

  • Hattery, Rebecca (Department of Mechanical and Aerospace Engineering, Old Dominion University) ;
  • Bilgen, Onur (Department of Mechanical and Aerospace Engineering, Old Dominion University)
  • Received : 2016.09.19
  • Accepted : 2017.04.20
  • Published : 2017.06.25

Abstract

This paper experimentally investigates the feasibility of harvesting vibration energy from whistles using piezoelectric materials. The end goal of this research is to generate sufficient power from the whistle to power a small radio transmitter to relay a basic signal - for example, a distress call. First, the paper discusses the current literature in energy harvesting from acoustic resonance. Next, the concept of an active whistle is presented. Next, results from energy harvesting experiments conducted on conventional and ultrasonic whistles undergoing human-actuation and actuation by a pressure-regulated air supply are presented. The maximum power density of the conventional whistle actuated by a human at 100 dB sound pressure level is $98.1{\mu}W/cm^3$.

Keywords

References

  1. Aladwani, A., Aldraihem, O. and Baz, A. (2015), "Piezoelectric vibration energy harvesting from a two-dimensional coupled acoustic-structure system with a dynamic magnifier", J. Vib. Acoust., 137.
  2. Anton, S.R. and Sodano, H.A. (2007), "A review of power harvesting using piezoelectric materials (2003-2006)", Smart Mater. Struct., 16, 1-21. https://doi.org/10.1088/0964-1726/16/1/001
  3. Bibo, A., Li, G. and Daqaq, M.F. (2012), "Performance analysis of a harmonicatype aeroelastic micropower generator", J. Intel. Mat. Syst. Str., 1045389X12438625.
  4. Bueche, F. (1969), Introduction to physics for scientists and engineers, New York,: McGraw-Hill.
  5. Cook-Chennault, K.A., Thambi, N. and Sastry, A.M. (2008), "Powering MEMS portable devices-a review of nonregenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems", Smart Mater. Struct., 17, 043001. https://doi.org/10.1088/0964-1726/17/4/043001
  6. Hattery, R. (2015), "Lumped parameter modeling and experimental evaluation of piezocomposite energy harvesters", Mech. Aerosp. Eng., Norfolk, VA: Old Dominion University.
  7. Horowitz, S.B., Sheplak, M., Cattafesta III, L.N., et al. (2006), "A MEMS acoustic energy harvester", J. Micromech. Microeng., 16, 174. https://doi.org/10.1088/0960-1317/16/9/S02
  8. Horowitz, S.B., Sheplak, M., Cattafesta, L.N. and Nishida, T. (2005), "MEMS acoustic energy harvester", PowerMEMS 2005. Tokyo, Japan, 4.
  9. Karami, M.A. and Inman, D.J. (2012), "Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters", Appl. Phys. Lett.,100.
  10. Khan F.U. and Izhar, E. (2013), "Acoustic-based electrodynamic energy harvester for wireless sensor nodes application", Int. J. Mater. Sci. Eng., 1, 7.
  11. Kim, S.H., Ji, C.H., Galle, P., et al. (2009), "An electromagnetic energy scavenger from direct airflow", J. Micromech.Microeng., 19, 094010. https://doi.org/10.1088/0960-1317/19/9/094010
  12. Leissa, A.W. (1969), Vibration of plates, Washington,: Scientific and Technical Information Division, National Aeronautics and Space Administration; for sale by the Supt. of Docs.
  13. Li, B., Ho You, J. and Kim, Y.J. (2013), "Low frequency acoustic energy harvesting using PZT piezoelectric plates in a straight tube resonator", Smart Mater. Struct., 22, 9.
  14. Li, B., Ho You, J., Laviage, A.J. and Kim, Y.J. (2012), "Acoustic energy harvesting using quarter-wavelength straight-tube resonator", Proceedings of the ASME 2012 International Mechanical Engineering Congress & Exposition. Houston, Texas, USA.
  15. Liu, F., Phipps, A., Horowitz, S., et al. (2008), "Acoustic energy harvesting using an electromechanical Helmholtz resonator", J. Acoust. Soc. Am., 123, 1983-1990. https://doi.org/10.1121/1.2839000
  16. Matsuda, T., Tomii, K., Hagiwara, S., et al. (2013), "Helmholtz resonator for Lead Zirconate Titanate acoustic energy harvester", J. Phys.: Conference Series. IOP Publishing, 012003.
  17. Moriyama, H., Tsuchiya, H. and Oshinoya, Y. (2013), "Energy harvesting with piezoelectric element using vibroacoustic coupling phenomenon", Adv. Acoust. Vib.
  18. Paradiso, J.A. and Starner, T. (2005), "Energy scavenging for mobile and wireless electronics", Ieee Pervasive Computing, 4, 18-27.
  19. Petersen, E.C. (1995), Application Note: An Overview of Standards for Sound Power Determination. Denmark, 12.
  20. Piezo Systems I. (2015), PSI-5A4E Single Layer Disks. Available at: http://www.piezo.com/prodsheet3disk5A.html.
  21. Pillai, M.A. and Deenadayalan, E. (2014), "A review of acoustic energy harvesting", Int. J. Precision Eng. Manufact., 15, 949-965. https://doi.org/10.1007/s12541-014-0422-x
  22. Priya, S. and Inman, D.J. (2009), Energy harvesting technologies, New York: Springer.
  23. Reddy, J.N. (1999), Theory and analysis of elastic plates, Philadelphia, PA: Taylor & Francis.
  24. Shames, I.H. and Dym, C.L. (1985), Energy and finite element methods in structural mechanics, Washington, New York: Hemisphere Pub. Corp.; McGraw-Hill.
  25. Sherrit, S. (2008), "The physical acoustics of energy harvesting. Proceedings of the IEEE International Ultrasonics Symposium, Beijing, China.
  26. Sodano, H., Inman, D. and Park, G. (2004), "A review of power harvesting from vibration using piezoelectric materials", Shock Vib. Digest, 36, 197-205. https://doi.org/10.1177/0583102404043275
  27. Starner, T. and Paradiso, J.A. (2004), Human generated power for mobile electronics, CRC Press, 1-35.
  28. Sue, C.Y. and Tsai, N.C. (2012), "Human powered MEMS-based energy harvest devices", Appl. Energy, 93, 390-403. https://doi.org/10.1016/j.apenergy.2011.12.037
  29. Sun, C.L., Mu, X.J., Siow, L.Y., et al. (2014), "A miniaturization strategy for harvesting vibration energy utilizing helmholtz resonance and vortex shedding effect", IEEE Electron Device Lett., 35, 675-675. https://doi.org/10.1109/LED.2014.2320191
  30. Szilard, R. (1973), Theory and analysis of plates: classical and numerical methods, Englewood Cliffs, N.J.,: Prentice-Hall.
  31. Wang, W.C., Wu, L.Y., Chen, L.W. and Liu, C.M. (2010), "Acoustic energy harvesting by piezoelectric curved beams in the cavity of a sonic crystal", Smart Mater. Struct., 19, 7.
  32. Wu, L.Y., Chen, L.W. and Liu, C.M. (2009), "Acoustic energy harvesting using resonant cavity of a sonic crystal", Appl. Phys. Lett., 95, 3.
  33. Yang, A., Li, P, Wen, Y., et al. (2014), "Note: High-efficiency broadband acoustic energy harvesting using Helmholtz resonator and dual piezoelectric cantilever beams", Rev. Sci. Instrum., 85, 066103. https://doi.org/10.1063/1.4882316