• Title/Summary/Keyword: Acidic drug

Search Result 106, Processing Time 0.022 seconds

Drug Delivery into the Blood-Brain Barrier by Endogenous Substances-A Role of Amine and Monocarboxylic Acid Carrier Systems for the Drug Transport- (내인성물질의 수송계를 이용한 혈액-뇌관문에의 약물송달V-약물의 혈액-뇌관문 투과성에 대한 염기성 아민 및 모노카르본산 수송계의 역할-)

  • Kang, Young-Sook
    • Journal of Pharmaceutical Investigation
    • /
    • v.20 no.4
    • /
    • pp.223-228
    • /
    • 1990
  • The contribution of endogenous transport systems to the blood-brain barrier (BBB) transport of basic and acidic drugs was studied by using a carotid injection technique in rats and an isolated bovine cerebrovascular disease state were compared between the normotensive rats (WKY) and stroke-prone spontaneously hypertensive rats (SHRSP) which have been well established as an animal model with pathogenic similarities to humans. Basic drugs such as eperisone, thiamine and scopolamine inhibited, in a concentration dependent manner the in vivo uptake of $[{^3}H]choline$ through BBB, whereas amino acids and acidic drugs such as salicylic acid and valproic acid did not inhibit the uptake. The uptake of $[^3H]choline$ by B-CAP increased with time and showed a remarkable temperature dependency. The uptake of $[^3H]choline$ by B-CAP showed the very similar inhibitory effects as observed in the in vivo brain uptake, and was competitively inhibited by a basic drug, eperisone. The in vivo BBB uptakes of $[^3H]acetic$ acid and $[^{14}C]salicylic$ acid were dependent on pH of the injectate and the concentration of drugs. Several acidic drugs such such as salicylic acid, benzoic acid and valproic acid inhibited the in vivo uptake of $[^3H]acetic$ acid, whereas amino acid, choline and a basic drug such as eperisone did not inhibit the uptake. The uptake of acetic acid by B-CAP was competitively inhibited by salicylic acid. The permeability surface area product (PS) through BBB for $[^3H]choline$ in SHRSP was significantly lower than that in WKY. The concentration of choline in the brain dialysate in SHRSP was about half of that in WKY, while no significant difference was observed in the plasma concentration of choline between SHRSP and WKY. No significant difference was observed in the transport of monocarboxylic acids, glucose and neutral amino acid through BBB between SHRSP and WKY. From these results, it was concluded that BBB transport system of choline contributes to the transport of basic drugs through BBB, that acidic drugs can be transported via a moncarboxylic acid BBB transport system and that the specific dysfuntion of the BBB choline transport in SHRSP was ascribed to the reduction of the maximum velocity of choline concentration in the brain interstitial fluids.

  • PDF

Poly(benzyl-L-histidine)-b-Poly(ethylene glycol) Micelle Engineered for Tumor Acidic pH-Targeting, in vitro Evaluation

  • Lee, Eun-Seong;Youn, Yu-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.8
    • /
    • pp.1539-1544
    • /
    • 2008
  • A polymeric micelle, based on the poly(benzyl-L-histidine)-b-poly(ethylene glycol) (polyBz-His-b-PEG) diblock copolymer, was designed as a tumor-specific targeting carrier. The micelles (particle size: 67-80 nm, critical micelle concentration (CMC); 2-3 $\mu$g/mL) were formed from the diafilteration method at pH 7.4, as a result of self-assembly of the polyBz-His block at the core and PEG block on the shell. Removing benzyl (Bz) group from polyBz-His block provided pH-sensitivity of the micellar core; the micelles were physically destabilized in the pH range of pH 7.4-5.5, depending on the content of the His group free from Bz group. The ionization of His group at a slightly acidic pH promoted the deformation of the interior core. These pHdependent physical changes of the micelles provide the mechanism for pH-triggering anticancer drug (e.g., doxorubicin: DOX) release from the micelle in response to the tumor’s extracellular pH range (pH 7.2-6.5).

Fast Protein Staining in Sodium Dodecyl Sulfate Polyacrylamide Gel using Counter ion-Dyes, Coomassie Brilliant Blue R-250 and Neutral Red

  • Choi, Jung-Kap;Yoo, Gyurng-Soo
    • Archives of Pharmacal Research
    • /
    • v.25 no.5
    • /
    • pp.704-708
    • /
    • 2002
  • A fast and sensitive protein staining method in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) using both an acidic dye, Coomassie Brilliant Blue R-250 (CBBR) and a basic dye, Neutral Red (NR) is described. It is based on a counter ion-dye staining technique that employs oppositely charged two dyes to form an ion-pair complex. The selective binding of the free dye molecules to proteins in an acidic solution enhances the staining effect of CBBR on protein bands, and also reduces gel background. It is a rapid staining procedure, involving fixing and staining steps with short destaining that are completed in about 1 h. As the result, it showed two to fourfold increase in sensitivity comparing with CBBR staining. The stained protein bands can be visualized at the same time of staining.

INTERACTION OF TENECIN FRAGMENTS WITH LIPOSOMES

  • Park, Myeong-Jun;Cho, Hyun-Sook;Hong, Sung-Yu;Yoon, Jeong-Hyeok;Lee, Keun-Hyeong;Moon, Hong-Mo;Cheong, Hong-Seok
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1996.07a
    • /
    • pp.37-37
    • /
    • 1996
  • Tenecin fragments are antimicrobial and antifungal peptide from Tenebrio molitor with highly positive charged amino acid residues. To elucidate their membrane selectivity and molecular mechanism, various forms of tenecin fragments were synthesized, and their interaction with acidic phospholipid, Gram (+), fungal and human erythrocyte membrane were investigated by ANTS/DPX leakage, membrane binding and fusion assay. (omitted)

  • PDF

Hydrolysis of Ginseng Saponins and Quantifications of Saponins, Prosapogenins and Sapogenins in Crude Drug Extracts for Quality Contyol

  • Ko, Sung-Ryong;Choi, Kang-Ju;Cho, Byung-Goo;Nho, Kil-Bong;Kim, Seok-Chang;Jeon, Byeong-Seon;Kim, Chun-Suk
    • Journal of Ginseng Research
    • /
    • v.29 no.3
    • /
    • pp.126-130
    • /
    • 2005
  • Ginseng saponins have been known as main active principles and are quantified as the index components of ginseng and its products for quality control. However ginseng saponins are easily hydrolyzed in acidic solutions of crude drug preparations. Due to the hydrolysis of saponins in acidic condition, it is generally difficult to determine ginseng saponins In crude drug preparations. Ginseng saponins, prosapogenins and sapogenins of crude drug extracts were quantified by HPLC. Ginseng saponins were quantified by HPLC on $Lichrosorb-NH_2$ column with acetonitrile/water/1-butanol(80:20:10, v/v). Ginseng $prosapogenin-Rg_2$ and $-Rg_2$ were extracted with ethyl acetate from $50\%$ acetic acid hydrolyzates of saponin fractions and quantified by HPLC on $Lichrosorb-NH_2$ column with acetonitrile/water(90:10, v/v). Ginseng sapogenins, panafadiol and panaxatriol, were extracted with diethyl ether from $7\%-sulfuric$ acid hydrolyzates of saponin fractions and quantified by HPLC on ${\mu}-Bondapak\;C_{18}$ column with acetonitrile/methano1/chloroform(83:10:7, v/v). These methods of analyses of sapogenins and prosapogenins were more useful for quality control than those of ginseng saponins in some of crude drug preparations.

Biostable Poly(ethylene oxide)-b-poly(methacrylic acid) Micelles forpH-triggered Release of Doxorubicin

  • Choi, Young-Keun;Lee, Dong-Won;Yong, Chul-Soon;Choi, Han-Gon;Bronich, Tatiana K.;Kim, Jong-Oh
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.2
    • /
    • pp.111-115
    • /
    • 2011
  • pH-sensitive cross-linked polymeric micelles were synthesized by using block ionomer complexes of poly(ethylene oxide)-b-poly(methacrylic acid) (PEO-b-PMA) with calcium ions as micellar templates. An anticancer drug, doxorubicin (DOX) was conjugated on the cross-linked ionic cores of micelles via acid-labile hydrozone bonds. The resulting DOX-conjugated, pH-sensitive micelles are stable at physiological conditions, whereas the release of DOX was significantly increased at the acidic pH. Such micelles were internalized to lysosomes, and acidic pH in lysosomes triggers the release of DOX upon internalization in MCF-7 breast cancer cells. The released DOX entered the cell nucleus and eventually killed cancer cells. Therefore, these data demonstrate that the pH-sensitive micelles could be a promising nanocarrier for delivery of anticancer drug, DOX.

Doxorubicin-loaded PEI-silica Nanoparticles for Cancer Therapy

  • Heekyung Park;Seungho Baek;Donghyun Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.570-575
    • /
    • 2023
  • Targeted anticancer drug delivery systems are needed to enhance therapeutic efficacy by selectively delivering drugs to tumor cells while minimizing off-target effects, improving treatment outcomes and reducing toxicity. In this study, a silica-based nanocarrier capable of targeting drug delivery to cancer cells was developed. First, silica nanoparticles were synthesized by the Stöber method using the surfactant cetyltrimethylammonium bromide (CTAB). Increasing the ratio of EtOH in the solvent produced uniformly spherical silica nanoparticles. Washing the nanoparticles removed unreacted residues, resulting in a non-toxic carrier for drug delivery in cells. Upon surface modification, the pH-responsive polymer, polyethyleneimine (PEI) exhibited slow doxorubicin release at pH 7.4 and accelerated release at pH 5.5. By exploiting this feature, we developed a system capable of targeted drug release in the acidic tumor microenvironment.

Determination of N-nitrosodimethylamine in zidovudine using high performance liquid chromatography-tandem mass spectrometry

  • Yujin Lim;Aelim Kim;Yong-Moon Lee;Hwangeui Cho
    • Analytical Science and Technology
    • /
    • v.36 no.6
    • /
    • pp.281-290
    • /
    • 2023
  • Zidovudine is an antiretroviral agent prescribed for the prevention and treatment of human immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS). It is typically recommended to be used in combination with other antiretroviral drugs. Zidovudine has the potential to generate N-nitrosodimethylamine (NDMA) in the presence of dimethylamine and nitrite salt under acidic reaction conditions during the drug manufacturing process. NDMA is a potent human carcinogen that may be detected in drug substances or drug products. An analytical method was developed to determine NDMA in pharmaceuticals including zidovudine using high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The analysis involved reversed-phase chromatography on a Kinetex F5 column with a mobile phase comprising water-acetonitrile mixtures. The detection of positively charged ions was conducted using atmospheric pressure chemical ionization (APCI). The calibration curve demonstrated excellent linearity (r = 0.9997) across the range of 1-50 ng/mL with a highly sensitive limit of detection (LOD) at 0.3 ng/mL. The developed method underwent thorough validation for specificity, linearity, accuracy, precision, robustness, and system suitability. This sensitive and specific analytical method was applied for detecting NDMA in zidovudine drug substance and its formulation currently available in the market, indicating its suitability for drug quality management purposes.

Biological Activity of Acidic Polysaccharide of Korean Red Ginseng 1.-Effects on Alcohol Detoxification System in the Llver of Alcohol-intoxicated Rats (홍삼 산성다당체의 생리활성 연구(I)-알코올 중독 동물의 간장 알코을 해독계에 미치는 영향)

  • 이정규;최종원
    • Journal of Ginseng Research
    • /
    • v.22 no.4
    • /
    • pp.260-266
    • /
    • 1998
  • The effects of acidic polysaccharide of Korean red ginseng (AcPS) on metabolisms of drug and alcohol in the liver were investigated. We could find that treatment of AcPS to six-week ethanol administered rats lowered the levels of alcohol and acetaldehyde in serum. We also we found that treatment of AcPS normalized the elevated activities of free radical generation system, decreased activities of detoxification system such as ${\gamma}$-glutamylcysteine synthetase and glutathione S-transferase, and decreased activities of acetaldehyde metabolizing system. The cytosolic alcohol dehy drogenase and microsomal ethanol oxidizing system (MEOS) were strongly enhanced.

  • PDF

Biological Activities of Acidic Polysaccharide of Korean Red Ginseng.111.-Effects on Metabolizing Activities in Acetaminophen- treated Rats (홍삼 산성다당체의 생리활성 연구(111)-아세트아미노펜 처리 흰쥐의 대사기능에 미치는 영향)

  • 이정규;최종원
    • Journal of Ginseng Research
    • /
    • v.22 no.4
    • /
    • pp.267-273
    • /
    • 1998
  • Pretreatment of acidic polysaccharide of Korean red ginseng (AcPS) for two weeks remarkably lowered the elevated content of lipid peroxide and levels of aminotransferases, sorbitol dehydrogenase, ${\gamma}$-glutamyltransferase, alkaline phosphatase and lactate dehydrogenase in liver intoxicated by acetaminophen (AA) . Pretreatments of AcPS also strengthen the liver function of glutathione related detoxication system indicated by glutathione contents and activities of glutathione S-transferase and glutathione reeducates which were affected by AA treatments. Activity of ${\gamma}$-glutamylcysteine syntheses was not changed by AcPS pretreatment whereas the activity of flu tathione reeducates was increased significantly. These results collectively indicate that the treatments of AcPS can promote the metabolism of lipid and reduce the production of peroxide in acetaminophen-intoxicated animals.

  • PDF