DOI QR코드

DOI QR Code

Doxorubicin-loaded PEI-silica Nanoparticles for Cancer Therapy

  • Heekyung Park (Department of Biomedical Engineering, School of Integrative Engineering, Chung-Ang University) ;
  • Seungho Baek (PCL, Inc.) ;
  • Donghyun Lee (Department of Biomedical Engineering, School of Integrative Engineering, Chung-Ang University)
  • Received : 2023.08.08
  • Accepted : 2023.09.26
  • Published : 2023.11.01

Abstract

Targeted anticancer drug delivery systems are needed to enhance therapeutic efficacy by selectively delivering drugs to tumor cells while minimizing off-target effects, improving treatment outcomes and reducing toxicity. In this study, a silica-based nanocarrier capable of targeting drug delivery to cancer cells was developed. First, silica nanoparticles were synthesized by the Stöber method using the surfactant cetyltrimethylammonium bromide (CTAB). Increasing the ratio of EtOH in the solvent produced uniformly spherical silica nanoparticles. Washing the nanoparticles removed unreacted residues, resulting in a non-toxic carrier for drug delivery in cells. Upon surface modification, the pH-responsive polymer, polyethyleneimine (PEI) exhibited slow doxorubicin release at pH 7.4 and accelerated release at pH 5.5. By exploiting this feature, we developed a system capable of targeted drug release in the acidic tumor microenvironment.

Keywords

Acknowledgement

This study was supported by the Chung-Ang University 2020 Graduate Research Scholarship.

References

  1. Tan, W., Wang, K., He, X., Zhao, X. J., Drake, T., Wang, L. and Bagwe, R. P., "Bionanotechnology Based on Silica Nanoparticles," Medicinal Research Reviews, 24(5), 621-638(2004). https://doi.org/10.1002/med.20003
  2. Rahman, I., Vejayakumaran, P., Sipaut, C., Ismail, J. and Chee, C., "Size-dependent Physicochemical and Optical Properties of Silica Nanoparticles," Materials Chemistry and Physics, 114(1), 328-332(2009). https://doi.org/10.1016/j.matchemphys.2008.09.068
  3. Wang, L., Zhao, W. and Tan, W., "Bioconjugated Silica Nanoparticles: Development and Applications," Nano Research, 1, 99-115 (2008). https://doi.org/10.1007/s12274-008-8018-3
  4. Jeelani, P. G., Mulay, P., Venkat, R. and Ramalingam, C., "Multifaceted Application of Silica Nanoparticles. A Review," Silicon, 12, 1337-1354(2020). https://doi.org/10.1007/s12633-019-00229-y
  5. Singh, L. P., Bhattacharyya, S. K., Kumar, R., Mishra, G., Sharma, U., Singh, G. and Ahalawat, S., "Sol-Gel Processing of Silica Nanoparticles and Their Applications," Advances in Colloid and Interface Science, 214, 17-37(2014). https://doi.org/10.1016/j.cis.2014.10.007
  6. Li, Z.-Z., Wen, L.-X., Shao, L. and Chen, J.-F., "Fabrication of Porous Hollow Silica Nanoparticles and Their Applications in Drug Release Control," J. Controlled Release, 98(2), 245-254 (2004). https://doi.org/10.1016/j.jconrel.2004.04.019
  7. Bagwe, R. P., Hilliard, L. R. and Tan, W., "Surface Modification of Silica Nanoparticles to Reduce Aggregation and Nonspecific Binding," Langmuir, 22(9), 4357-4362(2006). https://doi.org/10.1021/la052797j
  8. Wu, S.-H., Hung, Y. and Mou, C.-Y., "Mesoporous Silica Nanoparticles as Nanocarriers," Chemical Communications, 47(36), 9972- 9985(2011). https://doi.org/10.1039/c1cc11760b
  9. Manzano, M. and Vallet-Regi, M., "Mesoporous Silica Nanoparticles for Drug Delivery," Advanced Functional Materials, 30(2), 1902634(2020).
  10. Wang, Y., Zhao, Q., Han, N., Bai, L., Li, J., Liu, J., Che, E., Hu, L., Zhang, Q. and Jiang, T., "Mesoporous Silica Nanoparticles in Drug Delivery and Biomedical Applications," Nanomedicine: Nanotechnology, Biology and Medicine, 11(2), 313-327(2015). https://doi.org/10.1016/j.nano.2014.09.014
  11. Mo, R., Sun, Q., Xue, J., Li, N., Li, W., Zhang, C. and Ping, Q., "Multistage pH-responsive Liposomes for Mitochondrial-targeted Anticancer Drug Delivery," Advanced Materials, 24(27), 3659-3665(2012). https://doi.org/10.1002/adma.201201498
  12. Olusanya, T. O., Haj Ahmad, R. R., Ibegbu, D. M., Smith, J. R., Elkordy, A. A., "Liposomal Drug Delivery Systems and Anticancer Drugs," Molecules, 23(4), 907(2018).
  13. Zhang, X., Lin, Y.; Gillies, R. J., "Tumor pH and Its Measurement," J. Nuclear Medicine, 51(8), 1167-1170(2010). https://doi.org/10.2967/jnumed.109.068981
  14. Gerweck, L. E., Seetharaman, K., "Cellular pH Gradient in Tumor Versus Normal Tissue: Potential Exploitation for the Treatment of Cancer," Cancer Research, 56(6), 1194-1198(1996).
  15. Thews, O.; Riemann, A., "Tumor pH and Metastasis: a Malignant Process Beyond Hypoxia," Cancer and Metastasis Reviews, 38, 113-129(2019). https://doi.org/10.1007/s10555-018-09777-y
  16. Koo, H., Lee, H., Lee, S., Min, K. H., Kim, M. S., Lee, D. S., Choi, Y., Kwon, I. C., Kim, K., Jeong, S. Y., "In vivo Tumor Diagnosis and Photodynamic Therapy via Tumoral pH-responsive Polymeric Micelles," Chemical Communications, 46(31), 5668-5670(2010). https://doi.org/10.1039/c0cc01413c
  17. Arcamone, F., Doxorubicin: Anticancer Antibiotics, Elsevier, 2012.
  18. Rivankar, S., "An Overview of Doxorubicin Formulations in Cancer Therapy," J. Cancer Research and Therapeutics, 10(4), 853-858(2014). https://doi.org/10.4103/0973-1482.139267
  19. Lao, J., Madani, J., Puertolas, T., Alvarez, M., Hernandez, A., Pazo-Cid, R., Artal, A., Anton Torres, A., "Liposomal Doxorubicin in the Treatment of Breast Cancer Patients: A Review," J. Drug Delivery, 2013 (2013).
  20. Ramalingam, V., Varunkumar, K., Ravikumar, V., Rajaram, R., "Target Delivery of Doxorubicin Tethered with PVP Stabilized Gold Nanoparticles for Effective Treatment of Lung Cancer," Scientific Reports, 8(1), 3815(2018).
  21. Monk, B. J., Herzog, T. J., Kaye, S. B., Krasner, C. N., Vermorken, J. B., Muggia, F. M., Pujade-Lauraine, E., Lisyanskaya, A. S., Makhson, A. N. and Rolski, J., "Trabectedin Plus Pegylated Liposomal Doxorubicin in Recurrent Ovarian Cancer," J. Clin Oncol, 28(19), 3107-14(2010). https://doi.org/10.1200/JCO.2009.25.4037
  22. Olson, R. D., Mushlin, P. S., "Doxorubicin Cardiotoxicity: Analysis of Prevailing Hypotheses," The FASEB J., 4(13), 3076-3086 (1990). https://doi.org/10.1096/fasebj.4.13.2210154
  23. Wang, Z., Li, X., Cui, Y., Cheng, K., Dong, M. and Liu, L., "Effect of Molecular Weight of Regenerated Silk Fibroin on Silk-based Spheres for Drug Delivery," Korean J. Chemical Engineering, 37, 1732-1742(2020). https://doi.org/10.1007/s11814-020-0591-5
  24. Bagalkot, V., Farokhzad, O. C., Langer, R. and Jon, S., "An Aptamer-doxorubicin Physical Conjugate as a Novel Targeted Drug-delivery Platform," Angewandte Chemie International Edition, 45(48), 8149-8152B(2006).
  25. Sethuraman, V. A., Na, K. and Bae, Y. H., "pH-responsive Sulfonamide/PEI System for Tumor Specific Gene Delivery: An In Vitro Study," Biomacromolecules, 7(1), 64-70(2006). https://doi.org/10.1021/bm0503571
  26. Hu, J., Miura, S., Na, K. and Bae, Y. H., "pH-responsive and Charge Shielded Cationic Micelle of Poly(L-histidine)-block-Short Branched PEI for Acidic Cancer Treatment," J. Controlled Release, 172(1), 69-76(2013). https://doi.org/10.1016/j.jconrel.2013.08.007
  27. Xu, B., Zhu, Y.-J., Wang, C.-H., Qiu, C., Sun, J., Yan, Y., Chen, X., Wang, J.-C. and Zhang, Q., "Improved Cell Transfection of siRNA by pH-responsive Nanomicelles Self-assembled with mPEG-b-PHis-b-PEI Copolymers," ACS Applied Materials & Interfaces, 10(26), 21847-21860(2018). https://doi.org/10.1021/acsami.8b04301
  28. Yang, J., Ryu, W., Lee, S., Kim, K., Choi, M., Lee, Y. and Kim, B., "Synthesis of pH-Sensitive Hydrogel Nanoparticles in Supercritical Carbon Dioxide," Korean Chemical Engineering Research, 47(4), 453-458(2009).