• Title/Summary/Keyword: Acid precipitation

Search Result 730, Processing Time 0.031 seconds

The Effect of Strong Acid and Ionic Material Addition in the Microwave-assisted Solubilization of Waste Activated Sludge (Microwave를 이용한 폐활성슬러지의 가용화 반응에서 강산과 이온성 물질의 첨가가 미치는 영향)

  • Lee, Jeongmin;Lee, Jaeho;Lim, Jisung;Kim, Youngwoo;Byun, Imgyu;Park, Taejoo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.1
    • /
    • pp.60-68
    • /
    • 2015
  • The study of waste activated sludge (WAS) solubilization has been increased for sludge volume reduction and enhancing the efficiency of anaerobic digestion. Microwave (MW)-assisted solubilization is an effective method for the solubilization of WAS because this method can lead to thermal, nonthermal effect and ionic conduction by dielectric heating. In this study, the solubilization of WAS by MW heating and conductive heating (CH) was compared and to enhance the MW-assisted solubilization of WAS at low MW output power, chemical agents were applied such as $H_2SO_4$ as the strong acid and $CaCl_2$, NaCl as the ionic materials. Compared to the COD solubilization of WAS by CH, that by MW heating was approximately 1.4, 6.2 times higher at $50^{\circ}C$, $100^{\circ}C$, respectively and the highest COD solubilization of WAS was 10.0% in this study of low MW output power condition. At the same MW output power and reaction time in chemically agents assisted experiments, the COD solubilization of WAS were increased up to 18.1% and 12.7% with the addition of $H_2SO_4$ and NaCl, however, that with the addition of $CaCl_2$ was 10.7%. This result might be due to the fact that the precipitation reaction occurred by calcium ion ($Ca^{2+}$) and phosphate ion (${PO_4}^{3-}$) produced in WAS after MW-assisted solubilization. In this study, $H_2SO_4$ turned out to be the optimal agent for the enhancement of MW efficiency, the addition of 0.2 M $H_2SO_4$ was the most effective condition for MW-assisted WAS solubilization.

Mineralogical and Geochemical Characteristics of the Precipitates in Acid Mine Drainage of the Heungjin-Taemaek Coal Mine (흥진태맥 석탄광 산성광산배수 침전물의 광물학적 및 지구화학적 특성)

  • Shin, Ji-Hwan;Park, Ji-Yeon;Kim, Yeongkyoo
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.299-308
    • /
    • 2021
  • Fe(II) released from mining activities is precipitated as various Fe(III)-oxyhydroxides when exposed to an oxidizing environment including mine drainage. Ferrihydrite, one of the representative precipitated Fe(III) minerals, is easy to adsorb heavy metals and other pollutants due to the large specific surface area caused by very low crystallinity. Ferrihydrite is transformed to thermodynamically more stable goethite in the natural environment. Hence, information on the transformation of ferrihydrite to goethite and the related mobility of heavy metals in the acid mine drainage is important to predict the behaviors of those elements during ferrihydrite to goethite transition. The behaviors of heavy metals during the transformation of ferrihydrite to goethite were investigated for core samples collected from an AMD treatment system in the Heungjin-Taemaek coal mine by using X-ray diffraction (XRD), chemical analysis, and statistical analysis. XRD results showed that ferrihydrite gradually transformed to goethite from the top to the bottom of the core samples. Chemical analysis showed that the relative concentration of As was significantly high in the core samples compared with that in the drainage, indicating that As was likely to be adsorbed strongly on or coprecipitated with iron oxyhydroxide. Correlation analysis also indicated that As can be easily removed from mine drainage during iron mineral precipitation due to its high affinity to Fe. The concentration ratio of As, Cd, Co, Ni, and Zn to Fe generally decreased with depth in the core samples, suggesting that mineral transformation can increase those concentrations in the drainage. In contrast, the concentration ratio of Cr to Fe increased with depth, which can be explained by the chemical bond of iron oxide and chromate, and surface charge of ferrihydrite and goethite.

The Alterations of Geochemical Behavior of Arsenic in Stabilized Soil by the Addition of Phosphate Fertilizer (인산질 비료에 의한 안정화 적용 토양 내 비소의 지구화학적 거동 변화)

  • Jeon, Yong-Jung;Kim, Bun-Jun;Ko, Ju-In;Ko, Myoung-Soo
    • Economic and Environmental Geology
    • /
    • v.55 no.2
    • /
    • pp.209-217
    • /
    • 2022
  • The purpose of this study was to confirm the dissolution of arsenic from the stabilized soil around abandoned coal mines by cultivation activities. Experimental soils were collected from the agricultural field around Okdong and Buguk coal mines, and the concentration of arsenic in the soil and the geochemical mobility were confirmed. The average arsenic concentration was 20 mg/kg. The soil with relatively high geochemical mobility of arsenic in the soil was used in the batch and column experiment. The limestone was mixed with soil for soil stabilization, and the mixing ratio was 3% of limestone, based on the soil weight. The phosphoric acid fertilizer (NH4H2PO4) was added to the soil to simulate a cultivation condition according to the Rural Development Administration's rules. Comparative soil without mixing limestone was prepared and used as a control group. The arsenic extraction from soil was increased following the fertilizer mixing amount and it shows a positive relationship. The concentration of phosphate in the supernatant was relatively low under the condition of mixing limestone, which is determined to be result of binding precipitation of phosphate ions and calcium ions dissolved in limestone. Columns were set to mix phosphoric acid fertilizers and limestone corresponding to cultivation and stabilization conditions, and then the column test was conducted. The variations of arsenic extraction from the soil indicated that the stabilization was effectible until 10 P.V.; however, the stabilization effect of limestone decreased with time. Moreover, the geochemical mobility of arsenic has transformed by increasing the mobile fractions in soil compared to initial soil. Therefore, based on the arsenic extraction results, the cultivation activities using phosphoric fertilizer could induce a decrease in the stabilization effect.

Meteorological Constraints and Countermeasures in Major Summer Crop Production (하작물의 기상재해와 그 대책)

  • Shin-Han Kwon;Hong-Suk Lee;Eun-Hui Hong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.4
    • /
    • pp.398-410
    • /
    • 1982
  • Summer crops grown in uplands are greatly diversified and show a large variation in difference with year and location in Korea. The principal factor for the variation is weather, in which precipitation and temperature play a leading role and such a weather factors as wind, sun lights also influence production of the summer crops. Since artificial control of weather conditions as a main stress factor for crop production is almost impossible, it must be minimized only by an improvement of cultivation techniques and crop improvement. Precipitation plays a role as one of the most important factor for production of the summer crops and it is considered in two aspects, drought and excess moisture. This country, which belongs to monsoon territory, necessarily encounter one of this stress almost every year, even though the level is different. Therefore, the facilities for both drought and excess moisture are required, but actually it is not easy to complete for them. On this account, crops tolerant to drought, excess moisture and pests should be considered for establishing summer crops. For the districts damaged habitually every season, adequate crops should be cultured and appropriate method of planting, drainage and weed control should be applied diversely. Injuries by temperature is mainly attributed to lower temperature particularly in late fall and early spring, although higher temperature often causes some damages depending upon the kind of crops. Sometimes, lower temperature in summer season playa critical role for yield reduction in the summer crops. However, certain crops are prevented to some extent from this kind of stress by improving varieties tolerant to cold, hot weather or early maturing varieties. As is often the case, control of planting time or harvesting is able to be a good management for escaping the stress. Lodging, plant diseases and pests are considered as a direct or indirect damage due to weather stress, but these are characters able to be overcome by means of crop improvement and also controlled by other suitable methods. In addition, polytical supports capable of improving constitution of agriculture into modern industry is urgently required by programming of data for the damages, establishment of damage forecasting and compensation system.

  • PDF

Input, Output and Budget of Nitrogen and Sulphur in Forested Watershed Ecosystems (산림 소유역 생태계에서 질소와 황의 유입량, 유출량과 물질수지)

  • You, Young-Han;Kim, Joon-Ho;Mun, Hyeong-Tae;Lee, Chang-Seok
    • The Korean Journal of Ecology
    • /
    • v.25 no.3 s.107
    • /
    • pp.189-195
    • /
    • 2002
  • In order to elucidate the budget and cycling of Nitrogen and Sulfur, essential elements and principal constituents of acid rain, their input through precipitation, and their output by streamflow were quantified in coniferous and deciduous forested watersheds, using combination of nutrient concentration and hydrological analysis, in Kwangnung Experimental Forest from July 1991 to December 1993. Amount of annual mean precipitation was $12,916\;ton{\cdot}ha^{-1}{\cdot}yr^{-1}$, annual mean runoff $5,094\;ton{\cdot}ha^{-1}{\cdot}yr^{-1}$(39%), $7,467\;ton{\cdot}ha^{-1}{\cdot}yr^{-1}$(59%) in coniferous and deciduous forest watersheds, respectively. Amounts of annual input of $N({NO_3}^-+{NH_4}^+)$ and ${SO_4}^{2-}$ through preciptation were 12.5, $81.72\;kg{\cdot}ha^{-1}{\cdot}yr^{-1}$, repectively. Annual output via runoff of $N({NO_3}^-+{NH_4}^+)$ and ${SO_4}^{2-}$ were 0.06, $39.23\;ton{\cdot}ha^{-1}{\cdot}yr^{-1}$ in the coniferous forest watershed ecosystem, and 0.15, $55.46\;ton{\cdot}ha^{-1}{\cdot}yr^{-1}$ in the deciduous one, respectively. On the basis of annual nutrient input and output, the annual budget of $N({NO_3}^-+{NH_4}^+)$ and ${SO_4}^{2-}$ were +12.46, $+42.49\;ton{\cdot}ha^{-1}{\cdot}yr^{-1}$ in the coniferous forest watershed, and +11.35, $+26.26\;ton{\cdot}ha^{-1}{\cdot}yr^{-1}$ in the deciduous one. Thus $N({NO_3}^-+{NH_4}^+)$ and ${SO_4}^{2-}$ were accumulated in both forested watershed ecosystems.

Hydrogeochemical and Environmental Isotope Study of Groundwaters in the Pungki Area (풍기 지역 지하수의 수리지구화학 및 환경동위원소 특성 연구)

  • 윤성택;채기탁;고용권;김상렬;최병영;이병호;김성용
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.4
    • /
    • pp.177-191
    • /
    • 1998
  • For various kinds of waters including surface water, shallow groundwater (<70 m deep) and deep groundwater (500∼810 m deep) from the Pungki area, an integrated study based on hydrochemical, multivariate statistical, thermodynamic, environmental isotopic (tritium, oxygen-hydrogen, carbon and sulfur), and mass-balance approaches was attempted to elucidate the hydrogeochemical and hydrologic characteristics of the groundwater system in the gneiss area. Shallow groundwaters are typified as the 'Ca-HCO$_3$'type with higher concentrations of Ca, Mg, SO$_4$and NO$_3$, whereas deep groundwaters are the 'Na-HCO$_3$'type with elevated concentrations of Na, Ba, Li, H$_2$S, F and Cl and are supersaturated with respect to calcite. The waters in the area are largely classified into two groups: 1) surface waters and most of shallow groundwaters, and 2) deep groundwaters and one sample of shallow groundwater. Seasonal compositional variations are recognized for the former. Multivariate statistical analysis indicates that three factors may explain about 86% of the compositional variations observed in deep groundwaters. These are: 1) plagioclase dissolution and calcite precipitation, 2) sulfate reduction, and 3) acid hydrolysis of hydroxyl-bearing minerals(mainly mica). By combining with results of thermodynamic calculation, four appropriate models of water/ rock interaction, each showing the dissolution of plagioclase, kaolinite and micas and the precipitation of calcite, illite, laumontite, chlorite and smectite, are proposed by mass balance modelling in order to explain the water quality of deep groundwaters. Oxygen-hydrogen isotope data indicate that deep groundwaters were originated from a local meteoric water recharged from distant, topograpically high mountainous region and underwent larger degrees of water/rock interaction during the regional deep circulation, whereas the shallow groundwaters were recharged from nearby, topograpically low region. Tritium data show that the recharge time was the pre-thermonuclear age for deep groundwaters (<0.2 TU) but the post-thermonuclear age for shallow groundwaters (5.66∼7.79 TU). The $\delta$$\^$34/S values of dissolved sulfate indicate that high amounts of dissolved H$_2$S (up to 3.9 mg/1), a characteristic of deep groundwaters in this area, might be derived from the reduction of sulfate. The $\delta$$\^$13/C values of dissolved carbonates are controlled by not only the dissolution of carbonate minerals by dissolved soil CO$_2$(for shallow groundwaters) but also the reprecipitation of calcite (for deep groundwaters). An integrated model of the origin, flow and chemical evolution for the groundwaters in this area is proposed in this study.

  • PDF

Air Pollutants Levels and Physiological Variation of Ginkgo biloba in Chuncheon (춘천지역의 대기오염도와 은행나무의 생리적 변화에 관한 연구)

  • Lee Sang-Deok;Joo Yeong-Teuk;Han Jin-Seok
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.2
    • /
    • pp.141-147
    • /
    • 2005
  • This study investigated air pollutant levels and physiological variation of Ginkgo biloba in Chuncheon. The results were as follows: The annual average concentrations of $SO_2,\;NO_2\;and\;PM10$ were 0.004ppm, 0.013 ppm and $66{\mu}g/m^3$, respectively. The volume weighted average concentrations of ionic components were $SO_4\;^{2-}\;3.584 mg/m^3,\;NO_3^-\; 2.803 mg/m^3,\;Cl^-\;1.485 mg/m^3\;and\;NH_4\;^+\;0.998 mgg/m^3$ in precipitation. The annual wet deposition amount of the major ions was shown to be $SO_4^{2-}\;3.865g/m^2/yr,\;NO_3^-\;2.924g/m^2/yr,\;Cl^-\;2.773g/m^2/yr\;and\; NH_4\;^+\;1.485 g/m^2/yr$ during this study period. The seasonal averaged pH in leaves were spring pH 5.9 0.5, summer pH 5.5 0.4 and fall pH 5.1 0.3. The seasonal average water soluble sulfur content in leaves were spring 0.012 0.004%, summer $0.012\;0.002\%\;and\;fall\;0.020\;0.007\%$. The seasonal average water soluble sulfur content in bark were spring $0.0071\;0.0003\%,\;summer\; 0.0066\;0.0004\%,\;fall\;0.0063\;0.0004\%\;and\;winter\;0.0071\;0.0003\%$.

Assessment of Bio-corrosive Effect and Determination of Controlling Targets among Microflora for Application of Multi-functional CFB on Cement Structure (다기능 탄산칼슘 형성세균의 시멘트 건축물 적용위한 부식능 평가 및 건축물 정주미생물 중 방제 대상 결정)

  • Park, Jong-Myong;Park, Sung-Jin;Ghim, Sa-Youl
    • Journal of Life Science
    • /
    • v.25 no.2
    • /
    • pp.237-242
    • /
    • 2015
  • The use of calcite-forming bacteria (CFB) in crack remediation and durability improvements in construction materials creates a permanent and environmentally-friendly material. Therefore, research into this type of application is stimulating interdisciplinary studies between microbiology and architectural engineering. However, the mechanisms giving rise to these materials are dependent on calcite precipitation by the metabolism of the CFB, which raises concerns about possible hazards to cement-based construction due to microbial metabolic acid production. The aim of this study was to determine target microorganisms that possibly can have bio-corrosive effects on cement mortar and to assess multi-functional CFBs for their safe application to cement structures. The chalky test was first used to evaluate the $CaCO_3$ solubilization feature of construction sites by fungi, yeast, bacterial strains. Not all bacterial strains are able to solubilize $CaCO_3$, but C. sphaerospermum KNUC253 or P. prolifica KNUC263 showed $CaCO_3$ solubilization activity. Therefore, these two strains were identified as target microorganisms that require control in cement structures. The registered patented strains Bacillus aryabhatti KNUC205, Arthrobacter nicotianae KNUC2100, B. thuringiensis KNUC2103 and Stenotrophomonas maltophilia KNUC2106, reported as multifunctional CFB (fungal growth inhibition, crack remediation, and water permeability reduction of cement surfaces) and isolated from Dokdo or construction site were unable to solubilize $CaCO_3$. Notably, B. aryabhatti KNUC205 and A. nicotianae KNUC2100 could not hydrolyze cellulose or protein, which can be the major constituent macromolecules of internal materials for buildings. These results show that several reported multi-functional CFB can be applied to cement structures or diverse building environments without corrosive or bio-deteriorative risks.

Deposition of Atmospheric Pollutants in Forest Ecosystems and Changes in Soil Chemical Properties (대기오염물질(大氣汚染物質)의 산림생태계내(山林生態系內) 유입(流入)과 토양(土壤)의 화학적(化學的) 특성(特性) 변화(變化))

  • Kim, Dong Yeob;Ryu, Jung Hwan;Chae, Ji Seok;Cha, Soon Hyung
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.1
    • /
    • pp.84-95
    • /
    • 1996
  • Environmental pollution has recently been progressed in the metropolitan and industrial areas of Korea and concerns have been evolved against the chronic effects of the pollution on natural ecosystem. This study was carried out to investigate the environmental pollution impacts on ion input into forest ecosystems and soil environmental changes. Study plots were established at Seoul, Ulsan, Yeochon, and Seosan for pollution sites and at Pyungchang for a non-pollution site. Atmospheric deposition was measured with rain, throughfall, and stem flow samples collected in the forest areas. Soil chemical properties were investigated to compare the pollution impacts on the sites. Precipitation acidity in the metropolitan and industrial areas ranged from pH 4.5 to 5.5, showing the levels lower than pH 5.8 of mountain area. Ion concentrations in the precipitation had increased significantly while passing the crown layer in the metropolitan and industrial areas, showing the increase by 4 times at the maximum. Total ion input in the metropolitan and industrial areas was greater than that in mountain area by approximately 2-3 times. Soil acidification caused by acidic ion input seemed to be greatest at Seoul, showing pH 1 decrease compared to that of Pyungchang. Soil canon contents were relatively high in the metropolitan and industrial areas. Although the canon leaching loss was not apparent, soil acidification process seemed to be continued by acidic ion input. Environmental pollution in the metropolitan and industrial areas exerted changes in ion input into the forest ecosystems and soil conditions. The chronic effects of environmental pollution should be monitored and investigated further to explain the processes of ecosystem change and the impacts on plant growth.

  • PDF

Physicochemical properties of deposited particles on surface of pine leaves as biomarker for air pollution (솔잎가지 표면에 침착된 입자상 물질의 물리화학적 특성 및 대기오염 지표로서의 가능성 고찰)

  • Chung, David;Choi, Jeong-Heui;Lee, Jang-Ho;Lee, Soo-Yong;Lee, Ha-Eun;Park, Ki-Wan;Shim, Kyu-Young;Lee, Jong-Chun
    • Analytical Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.247-258
    • /
    • 2018
  • The purpose of the present study was to investigate whether the degree of air pollution can be evaluated via examination of local plants. Selected sites included two parks in an industrial area, as well as two parks in an urban area. Selected plant samples comprised one-year-old pine shoot leaves. Leaves growing over 2 m from the ground were collected from over 10 pine trees. Leaf surface was analyzed for deposition of 14 trace elements and 16 polycyclic aromatic hydrocarbons (PAHs), including particle size and mass, surface imaging, precipitation-mediated particle removal rate, and concentration. Particle size ranged from 0.4 to $200{\mu}m$, and the volume percentage of particles ${\leq}10$ was 20 %. Deposited particle mass ranged from 0.450-0.825 mg, and precipitation-mediated removal rate ranged from 10.0-27.6 %. Trace element concentration, as measured by ICP/MS after microwave acid digestion, was 18.8-26.3 mg/kg As, 0.08-0.13 mg/kg Be, 0.06-0.08 mg/kg Cd, 4.91-17.8 mg/kg Cr, 5.26-405 mg/kg Cu, 1,930-2,670 mg/kg Fe, 3.03-28.1 mg/kg Pb, 26.9-42.8 mg/kg Mn, 2.66-10.4 mg/kg Ni, 4,560-8,730 mg/kg Al, 2,500-6,120 mg/kg Ba, 5.27-17.8 mg/kg Rb, 40.9-95.3 mg/kg Sr, and 4,030-8,260 mg/kg Zn. Concentration of PAHs, as analyzed by GC/MS/MS after liquid-liquid extraction and purification of deposited particles, ranged from 1.17 to 12.378 mg/kg for ${\Sigma}PAH_{16}$ and from 1.17 to 12.378 mg/kg for ${\Sigma}PAH_7$.