• Title/Summary/Keyword: Acid medium

Search Result 2,644, Processing Time 0.033 seconds

In vitro Regeneration of Phragmites australis through Embryogenic Cultures

  • Lee Jeong-Sun;Kim Chang-Kyun;Kim In-Sung;Lee Eun-Ju;Choi Hong-Keun
    • Journal of Plant Biotechnology
    • /
    • v.8 no.1
    • /
    • pp.21-25
    • /
    • 2006
  • Phragmites australis (reed) has received much attention as being one of the principle emergent aquatic plants for treating industrial and civil wastewater. Plant regeneration via plant tissue culture in p. australis was investigated. Three types of callus were identified from seeds on N6 medium plus 4.5 UM 2,4-dichlorophenoxyacetic acid (2,4-D). Yellow compact type showed the best redifferentiation, whereas white compact type and yellow friable were not competent to differentiate into plane. Solid medium culture was better than liquid suspension culture for enhancing callus growth when N6 medium supplemented with 4.5 ${\mu}M$ 2,4-D was used. Phytagel, as a gelling agent, was superior to agar in plant regeneration on N6 medium, supplemented with 9.4 ${\mu}M$ kinetin and 0.54 ${\mu}M$ $\alpha$-naphthaleneacetic acid (NAA). Transfer of the plantlets regenerated from kinetin and NAA-supplemented N6 medium to growth regulator-free MS medium enhanced the further development of the plantlets. Plantlets on subsequently grown to maturity when tansferred to potting soil. The regenerated plants exhibited morphologically normal. The system for plant regeneration of P. australis enables to propagate elite lines on a large scale for water purification in the ecosystem

Study on Biochemical Constituents of Caprine Ovarian Follicular Fluid after Superovulation

  • Mishra, O.P.;Pandey, J.N.;Gawande, P.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.12
    • /
    • pp.1711-1715
    • /
    • 2003
  • The experiment was designed on 42 non pregnant Black Bengal goat. Out of which 18 were subjected to a superovulatory treatment comprising of eCG and hCG for embryo transfer study. The remaining 24 goats received no treatment and served as control for parameter studied as well as recipient for embryo transfer studies. Important biochemical constituents such as acid and alkaline phosphatase, total protein and cholesterol and inorganic phosphorus were estimated in the follicular fluid of control and treated group and the values were separately recorded for small medium and large size follicle. The results indicated a significant effect on acid phosphotase activity due to size of follicle. The value increased progressively from small to medium and from medium to large follicles. Alkaline phosphotase activity showed reverse trend. Alkaline phosphotase decreased progressively as size increased. The concentration of inorganic phosphorus did not reveal any significant difference between the control and treatment groups and also between the different size follicles. The concentration of protein decreased significantly from small to medium and from medium to large, although no difference was observed between the control and treatment groups. The concentration of Cholesterol in the follicular fluid indicated a significant increase from small to medium and to large follicle. Here also no difference was observed due to treatment. Similar in the composition of follicular fluid in the respect of above mentioned constituents indicated no of super ovulatory treatment on follicular fluid composition.

The Content Analysis of Amino Acids Including GABA of Chlorella protothecoides under Mixtrophic Culture (혼합영양 배양에서 Chlorella protothecoides의 GABA를 포함한 아미노산 함량 분석)

  • Jeong, Yu Jeong;Kim, Seong Hak;Min, Hee Gyung;Kim, Sung Chun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.10 no.1
    • /
    • pp.18-25
    • /
    • 2018
  • Chlorella is quantitatively and qualitatively high in protein with balanced essential amino acid profiles, vitamins and minerals. ${\gamma}-Aminobutyric$ acid (GABA) is broadly distributed in nature and fulfills multi-physiological functions including effect such as a health-promoting functional compound. To improve the GABA production, Chlorella protothecoides were grown through the modified mixtrophic culture medium containing 2L of sterilized bristol medium with 0.01% urea and 4.0% glucose in a 5L fermenter. The results showed that nineteen kinds of amino acid including GABA at C. protothecoides sample were analyzed using high performance liquid chromatography (HPLC). Glutamic acid in total concentration (%) of amino acid is the most abundant amino acid (33.10%), followed by alanine (20.48%) and GABA (17.48%). Three amino acids including GABA were responsible for more than 70% total concentration in C. protothecoides sample including eight essential and nine non-essential amino acids: aspartic acid, asparagine, serine, glutamine, histidine, glycine, threonine, arginine, tyrosine, valine, methionine, tryptophan, phenylalanine, isoleucine, leucine, lysine. As a result of this experiment, it is expected that Chlorella will be developed to a critical product having high value as, GABA, functional food materials.

Spectrophotometric Determination of Acidic Strength of Some Acids in Acetic Acid Medium (분광광도법에 의한 아세트산에서의 몇가지 산의 세기 측정에 관한 연구)

  • Ki-Won Cha;Sung-Wook Hong;Chang-Suk Yang;Ikchoon Lee
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.452-456
    • /
    • 1987
  • Acidic strength of benzenesulfonic acid (HBs) and it's derivatives, p-toluenesulfonic acid(HTs), p-chlorobenzenesulfonic acid(HCs) and m-nitrobenzenesulfonic acid(HNs), were measured in the anhydrous acetic acid medium by spectrophotometry. p-naphtholbenzein (PNB) was used as an indicator base and the ionization constants of HTs, HBs, HCs and HNs were $3.5{\times}10^2,\;4.1{\times}10^2,\;19.3{\times}10^2\;and\;50{\times}10^2$, respectively, at 20.0${\pm}$0.1$^{\circ}$C.

  • PDF

EPS Production, PHB Accumulation and Abiotic Stress Endurance of Plant Growth Promoting Methylobacterium Strains Grown in a High Carbon Concentration

  • Woo, Sung-Man;Subramanian, Parthiban;Ramasamy, Krishnamoorthy;Joe, M. Melvin;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.572-581
    • /
    • 2012
  • In this study, we compared growth pattern, floc yield, Exo-polysaccharides (EPS) production, Poly-${\beta}$-hydroxybutyrate (PHB) accumulation, resistance to osmotic and acid stress in Methylobacterium strains CBMB20, CBMB27, CBMB35, and CBMB110. Modified high C:N ratio medium denoted as HCN-AMS medium was used with a C:N ratio of 30:1. The HCN-AMS medium favored increased growth in all the studied strains. All Methylobacterium strains tested positive for EPS production and showed positive fluorescence with calcoflour stain. Elevated levels of EPS production from 4.2 to 75.0% was observed in HCN-AMS medium. Accumulation of PHB in HCN-AMS medium increased by 3.8, 36.7, and 12.0% in strains CBMB27, CBMB35, and CBMB110 respectively. Among the abiotic stresses, osmotic stress-induced growth inhibition of Methylobacterium strains was found to be lowered when grown in HCN-AMS medium. Likewise, growth inhibition due to acid stress at pH 5.0 was lower for strains grown in HCN-AMS medium compared to growth in AMS medium. Enhanced survivability under stress conditions may be attributed to the high EPS and PHB production at increased carbon concentration in the growth medium.

Influences of Culture Medium Components on the Production Poly (γ-Glutamic Acid) by Bacillus subtilis GS-2 Isolated Chungkookjang (청국장에서 분리한 Bacillus subtilis GS-2에 의한 Poly(γ-Glutamic Acid) 생산의 최적 배양조건)

  • Bang, Byung-Ho;Rhee, Moon-Soo;Kim, Kwan-Pil;Yi, Dong-Heui
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.3
    • /
    • pp.677-684
    • /
    • 2012
  • A bacterium strain GS-2 isolated from the Korean traditional seasoning food, Chungkookjang and was determined to produce large amounts of ${\gamma}$-PGA with high productivity when provided with simple nutrients (L-glutamic acid 2.0%, glucose 1.0%, $NH_4Cl$ 0.5%, $KH_2PO_4$ 0.05%, $MgSO_4{\cdot}7H_2O$ 0.01%, pH 7.0). In this study, the culture medium for this strain was optimized for the production of ${\gamma}$-PGA. The Bacillus subtilis GS-2 required supplementation with L-glutamic acid and other nutrients for maximal production of ${\gamma}$-PGA. The optimal culture conditions for ${\gamma}$-PGA production were a 48 hr culture time, a temperature of $33^{\circ}C$ and initial pH of 6.5 by rotary shaking (220 rpm). A maximum ${\gamma}$-PGA production of 31.0 $g/{\ell}$ was obtained with L-glutamic acid (30 $g/{\ell}$), sucrose (the main carbon source, 30 $g/{\ell}$), $NH_4Cl$ (the main nitrogen source, 2.5 $g/{\ell}$), $KH_2PO_4$ (1.5 $g/{\ell}$) and $MgSO_4{\cdot}7H_2O$ (0.15 $g/{\ell}$) in the culture medium.

Production of Recombinant Human Hyperglycosylated Erythropoietin Using Cell Culture Technology by Improving Sialylation. (Sialic Acid 함량 증가 배양기술에 의한 재조합 인간 다당쇄 에리스로포이에틴의 생산)

  • 박세철;이승오;박만식;김승훈;김준환;송무영;이병규;고인영;강희일
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.2
    • /
    • pp.142-148
    • /
    • 2004
  • Erythropoietin is a main regulator of human erythropoiesis. Recombinant human erythropoietin (rhEPO) is one of the glycoproteins produced in animal cells, and it has oligo saccharides chains which comprise about 40% of its molecular mass. Because the content of sialic acid can extend circulatory lifetime, the high degree of sialylation is often a desirable feature of therapeutic glycoproteins. In this study, the sialylation of rhEPO produced by chinese hamster ovary cell culture was maximized by supplementing the culture medium with N-acetylm-annosamine (ManNAc), a direct intracellular precursor for sialic acid synthesis and 2-deoxy-2,3-dehydro-N-acetylneuraminic acid (NeuAc2en), a sialidase inhibitor. Feeding of 20 mM ManNAc/0.5 mM NeuAc2en into culture medium increased the sialic acid content by nearly tenfold compared with unsupplemented medium. This effect was achieved without affecting the cell growth or product yield. Six erythropoietin fractions differing in sialic acid content, ranging from 11∼15% of EPO, were identified from chinese hamster ovary cell-derived rhEPO by mono Q column chromatography. It was found that, at 20 mM ManNAc/0.5 mM NeuAc2en feeding, productivity of hyper-glycosylated EPO increased up to 50%, compared with the unsupplemented medium.

Effect of plant growth regulators and antioxidants on in vitro plant regeneration and callus induction from leaf explants of purple passion fruit (Passiflora edulis Sims)

  • Huh, Yoon Sun;Lee, Joung Kwan;Nam, Sang Young
    • Journal of Plant Biotechnology
    • /
    • v.44 no.3
    • /
    • pp.335-342
    • /
    • 2017
  • Purple passion fruit (Passiflora edulis Sims) is one of the introduced tropical plants, an increasing interest has arisen due to its distinctive taste and attractive flavor. It is expected that passion fruit production and planted area will increase gradually in the years ahead because of high profitability and consumer's demands of healthful ingredients. So we tried to investigate the effect of plant growth regulators and antioxidants on in vitro plant regeneration and callus induction from leaf explants of passion fruit for an establishment of optimal mass propagation system. Young leaf explants of purple passion fruit were cultured in Murashige and Skoog (MS) medium containing different growth regulators and antioxidant additives to induce the shoot organogenesis. After 8 weeks, the highest embryogenic callus formation rate was obtained in MS medium supplemented with $1mg{\cdot}L^{-1}$ 6-benzylaminopurine (BAP) and $2mg{\cdot}L^{-1}$ 2,4-dichlorophenoxyacetic acid (2,4-D), furthermore, the shoot development via organogenesis was also observed. Silver nitrate ($AgNO_3$), which was added into the medium to minimize the adverse effects of leached phenolics, was effective for reduction of medium browning and sudden explant death. In the medium supplemented with $1mg{\cdot}L^{-1}$ BAP and $1mg{\cdot}L^{-1}$ gibberellic acid ($GA_3$), shoots were most vigorously regenerated and elongated. Most shoots rooted successfully in half strength medium with $1mg{\cdot}L^{-1}$ indol-3 acetic acid (IAA), and more than 90% of plantlets survived after 4-month acclimatization period.

Efficient Micropropagation of Pear Germplasm Using Soot Tips and Nodal Explants

  • Yi, JungYoon;Lee, GiAn;Chung, JongWook;Lee, YoungYi;Gwag, JaeGyun;Lee, SeokYoung
    • Korean Journal of Plant Resources
    • /
    • v.28 no.6
    • /
    • pp.690-696
    • /
    • 2015
  • We micropropagated pear (Pyrus species) using shoot tips and nodal explants from three pear genotypes. The ability to establish shoot tip cultures, proliferate shoots, induce rooting, and acclimatize the resulting plantlets are all elements of in vitro micropropagation. Shoots were induced from shoot tips on Murashige and Skoog medium (MS) with five different plant growth regulator combinations. The highest shoot formation rates were achieved for the three genotypes using MS supplemented with 1.0 mg/L N6-benzyladenine (BA) and 0.1 mg/L gibberellic acid (GA3). The maximum shoot number and shoot length for the three cultivars were recorded with 2.0 mg/L BA and 0.2 mg/L indole-3-butyric acid (IBA) in multiplication medium using nodal explants produced from microshoots. Nodal explants with one or two axillary buds cultured for three weeks initiated roots on medium supplemented with various concentrations of 1-naphthaleneacetic acid (NAA) or/and IBA in half-strength MS medium for adventitious rooting. The highest rooting response was with the combination of 0.2 mg/L NAA and 0.2 mg/L IBA. A combination of NAA and IBA resulted in a significant increase in the rooting ratio over NAA or IBA alone. In this medium, the root formation rate according to ranged from 68.9% for the BaeYun No. 3 genotype to 51.8% for the Hwanggeum genotype. We also investigated the influence of the concentration the polyamine phloroglucinol in rooting medium. For all three genotypes, the highest rooting ratio, longest root length, and greatest root number were observed in the treatments with 75-150 mg/L phloroglucinol. Most rooted plants were acclimatized successfully.

Optimization of Culture Medium for Novel Cell-Associated Tannase Production from Bacillus massiliensis Using Response Surface Methodology

  • Belur, Prasanna D.;Goud, Rakesh;Goudar, Dinesh C.
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.2
    • /
    • pp.199-206
    • /
    • 2012
  • Naturally immobilized tannase (tannin acyl hydrolase, E.C. 3.1.1.20) has many advantages, as it avoids the expensive and laborious operation of isolation, purification, and immobilization, plus it is highly stable in adverse pH and temperature. However, in the case of cell-associated enzymes, since the enzyme is associated with the biomass, separation of the pure biomass is necessary. However, tannic acid, a known inducer of tannase, forms insoluble complexes with media proteins, making it difficult to separate pure biomass. Therefore, this study optimizes the production of cell-associated tannase using a "protein-tannin complex" free media. An exploratory study was first conducted in shake-flasks to select the inducer, carbon source, and nitrogen sources. As a result it was found that gallic acid induces tannase synthesis, a tryptose broth gives higher biomass, and lactose supplementation is beneficial. The medium was then optimized using response surface methodology based on the full factorial central composite design in a 3 l bioreactor. A $2^3$ factorial design augmented by 7 axial points (${\alpha}$ = 1.682) and 2 replicates at the center point was implemented in 17 experiments. A mathematical model was also developed to show the effect of each medium component and their interactions on the production of cell-associated tannase. The validity of the proposed model was verified, and the optimized medium was shown to produce maximum cell-associated tannase activity of 9.65 U/l, which is 93.8% higher than the activity in the basal medium, after 12 h at pH 5.0, $30^{\circ}C$. The optimum medium consists of 38 g/l lactose, 50 g/l tryptose, and 2.8 g/l gallic acid.