• Title/Summary/Keyword: Acetylcholinesterase activity

Search Result 337, Processing Time 0.025 seconds

Effect of Leonurus japonicus Houtt. on Scopolamine-induced Memory Impairment in Mice (Scopolamine 유발 기억 손상 마우스에서 익모초의 효과)

  • Lee, Jihye;Kim, Hye-Jeong;Jang, Gwi Yeong;Seo, Kyung Hye;Kim, Mi Ryeo;Choi, Yun Hee;Jung, Ji Wook
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.34 no.2
    • /
    • pp.81-87
    • /
    • 2020
  • Cognitive impairment is symptoms of dementia, a degenerative brain disease that is drawing attention in a rapidly aging society. This study was conducted to investigate the improvement of cognitive function of Leonurus japonicus on scopolamine-induced memory impairment in mice and the effect and mechanism of memory recovery. In vivo studies were conducted on mice orally pretreated with L. japonicus in doses of 50, 100 and 200 mg/kg (p.o.) and scopolamine (1 mg/kg, i.p.) were injected 30 min before the behavioral task. Antioxidant activity was assessed by 2,2-diphenyl-1-picryl hydrazyl (DPPH) assay and 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay, and acetylcholinesterase (AChE) inhibition activity evaluated by Ellman's method. In behavior studies showed that L. japonicus has an improved the memory of scopolamine-treated mice in Y-maze, passive avoidance and Morris water maze test. In addition, L. japonicus was also exerted free radical scavenging activity and inhibited acetyl cholinesterase activity. These results suggest that L. japonicus improves short-term and long-term memory in scopolamine-induced memory decline model and prevents scopolamine-induced memory impairments through in reduced oxidative stress and acetyl cholinesterase inhibition effect. Thus, L. japonicus is related to functional medicinal materials for prevention and treatment of human dementia patients.

Comparative Study of White and Steamed Black Panax ginseng, P. quinquefolium, and P. notoginseng on Cholinesterase Inhibitory and Antioxidative Activity

  • Lee, Mi-Ra;Yun, Beom-Sik;Sung, Chang-Keun
    • Journal of Ginseng Research
    • /
    • v.36 no.1
    • /
    • pp.93-101
    • /
    • 2012
  • This study evaluated the anti-cholinesterases (ChEs) and antioxidant activities of white ginseng (WG) and black ginseng (BG) roots of Panax ginseng (PG), P. quinquefolium (PQ), and P. notoginseng (PN). Ginsenosides $Rg_1$, Re, Rf, $Rb_1$, Rc, $Rb_2$, and Rd were found in white PG, whereas Rf was not found in white PQ and Rf, Rc, and $Rb_2$ were not detected in white PN. The major ginsenoside content in steamed BG including $RK_3$, $Rh_4$, and 20(S)/(R)-$Rg_3$ was equivalent to approximately 70% of the total ginsenoside content. The WG and BG inhibited acetylcholinesteras (AChE) and butyrylcholinesterase (BChE) in a dose dependent manner. The efficacy of BG roots of PG, PQ, and PN on AChE and BChE inhibition was greater than that of the respective WG roots. The total phenolic contents and 2, 2-diphenyl-1-picryl-hydrazyl (DPPH) scavenging activity were increased by heat treatment. Among the three WG and BG, white PG and steamed black PQ have significantly higher contents of phenolic compounds. The best results for the DPPH scavenging activity were obtained with the WG and BG from PG. These results demonstrate that the steamed BG roots of the three studied ginseng species have both high ChEs inhibition capacity and antioxidant activity.

Activities of esterase and acetylcholinesterase on the diamond backmoth, Plutella xylostella (Lepidoptera : Yponomeutidae) and beet armywarm, Spodoptera exigua (Lepidoptera : Noctuidae) and inhibitions of acetylcholinesterase with flupyrazofos (배추좀나방과 파밤나방의 효소활성 및 flupyrazofos 에 의한 AChE 활성 저해)

  • Lee, Sang-Guei;Chon, Gil-Hyong;Lee, Hoi-Seon;Hwang, Chang-Yeon;Han, Man-Jong;Park, Hyung-Man
    • The Korean Journal of Pesticide Science
    • /
    • v.7 no.1
    • /
    • pp.18-24
    • /
    • 2003
  • The activities of esterase and acetylcholinesterase(AChE) on the Diamond backmoth (DBM), Plutella xylostella (Lepidoptera: Yponomeutidae) and Beet armywarm (BAW), Spodoptera exigua (Lepidoptera: Noctuidae) and inhibitions of AChE with flupyrazofos were clarified from the results of a series of experiments. These findings are described in brief as follows. The AChE activities of DBM and BAW in heads were $1.5{\sim}11.1{\mu}$mol/g/min in $1st{\sim}4th$ instar larvae of DBM and $1.7{\sim}45.2{\mu}$mol/g/min in $1st{\sim}6th$ instar larvae of BAW, respectively. Those were $25{\sim}30$ times higher in above 4th instar larvae of BAW than that of the 1st instar larvae of DBM. The activities of aliesterase in heads were $1.7{\sim}4.7$ times higher in $2nd{\sim}4th$ instar larvae of DBM and $8{\sim}55$ times higher in $3rd{\sim}6th$ instar larvae of BAW than 1st instar larvae of DBM. In abdomens, those were $3{\sim}17$ times higher in $2nd{\sim}4th$ instar larvae of DBM and $12{\sim}30$ times higher in $3rd{\sim}6th$ instar larvae of BAW than 1st instar larvae of DBM. Median AChE inhibition concentration $(I_{50})$ of flupyrazofos to the 2nd instar larvae of DBM and BAW were 92 nM and $15{\mu}M$, respectively, and those to the 4th instar larvae of DBM and BAW were $1.8{\mu}M$ and 3.1 mM, respectively. Insensitivity ratio of flupyrazofos in the 2nd instar BAW larvae showed ca. 162 times higher than that in the 2nd instar larvae of DBM, and that of the 4th instar BAW larvae showed ca. 1,720 times higher insensitivity to flupyrazofos than that of the 4th instar DBM larvae. AChE activities in the 2nd instar larvae of DBM and BAW at 32 h after applicaton of flupyrazofos decreased from 67.6% to 32.4% of the activity of the untreated control. That of the 4th instar larvae of DBM increased for 0.5 h after application flupyrazofos up to 75% of the untreated control, and after that it decreased to 34.5% of the untreated control at 32 h. In contrast, in the 4th instar larvae of BAW AChE activities increased for 8 h gradually up to 102 % of the activity of the untreated control, and then the activity decreased to 97% of the untreated control at 16 h after treatment.

Effects on Biomarkers and Endocrine in Muddy Loach (Misgurnus anguillicaudatus) under 21 day Exposure to Methomyl (21일간 methomyl에 노출한 미꾸리의 생물지표 및 내분비계 영향)

  • Han, Sun-Young;Kim, Ja-Hyun;Gwon, Ga-Young;Yeom, Dong-Hyuk
    • The Korean Journal of Pesticide Science
    • /
    • v.16 no.1
    • /
    • pp.69-77
    • /
    • 2012
  • To evaluate the effect of endocrine disruption chemicals (EDCs) to aquatic organisms, muddy loach (Misgurnus anguillicaudatus) was exposed to low concentration methomyl for 21 days in order to identify the effect of biomarkers and endocrine. Vitellogenin (VTG) in blood plasma, which used widely as validated biomarker for endocrine disruption, was significantly greater in male fish exposed to 0.4 mg/L and 2 mg/L methomyl, and in female fish exposed to 0.08 mg/L, 0.4 mg/L, and 2 mg/L methomyl for 21 days (p<0.05). This results suggest that methomyl have probability of endocrine disruption to organism on aquatic system. While inhibition of Acetylcholinesterase (AChE) activity and increase of DNA damage in comet assay were verified by fish exposed to methomyl, change of ethoxyresorufin-O-deethylase (EROD) activity was not occurred, comparing the control group (p<0.05). Indicators at the level of organism such as condition factor (CF), hepato-somatic index (HSI), and gonado-somatic index (GSI) were not influenced by exposure of methomyl. In conclusion, these results showed the possibility of methomyl in regard to not only endocrine disruption but also impacts on biochemical biomarkers to aquatic organisms.

The Ecological Health Screening Assessment of Agricultural area using Biomarkers and Bioindicators in Misgurnus Anguillicaudatus (case study) (미꾸리의 생물지표를 이용한 농업지역의 수생태계 건강성 스크리닝 평가(사례연구))

  • Kim, Ja-Hyun;Han, Sun-Young;Yeom, Dong-Hyuk
    • The Korean Journal of Pesticide Science
    • /
    • v.16 no.1
    • /
    • pp.62-68
    • /
    • 2012
  • This study evaluated the screening level assessment of ecological health using four biomarkers and four bioindicators of Misgurnus anguillicaudatus as a indicator species in agricultural area of South Korea during May-June 2011. The endocrine disrupting chemical (EDC) indicators, such as vitellogenin (VTG) and gonado-somatic index (GSI), were not significantly changed in the agricultural site (p>0.05), indicating no effects. The biomarkers and bioindicators were compared between two sites of reference site (RS) and the agricultural site (AS) for screening assessment of ecological health. The ethoxyresorufin-O-deethylase (EROD) activity, acetylcholinesterase (AChE) activity, and DNA damage were significantly changed in the AS compared with the RS (p<0.05). But the individual level bioindicators such as condition factor (CF), hepato-somatic index (HSI), and gonado-somatic index (GSI) were not significantly different from reference site (RS). These results may indicate impairments of ecological health by toxic chemicals and environmental conditions. Current this study is based on screening assessment of biochemical and individual level biomarkers and bioindicators, so further study is required additional biomarkers and population or community level bioindicators for more specific health assessments in agricultural areas.

Anti-amnesic Effect of Eriobotrya japonica Leaf Extract on Scopolamine-induced Memory Impairment in Rats (Scopolamine으로 유도된 기억력 손상 동물모델에서 비파엽 추출물의 학습 및 기억력 개선 효과)

  • Bae, Donghyuck;Kim, Jihye;Na, Ju-Ryun;Kim, Yujin;Lee, Joon-Yeol;Kim, Sunoh
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.6
    • /
    • pp.799-806
    • /
    • 2014
  • The present study was conducted to evaluate the effects of extract from Eriobotrya japonica leaves (EJE) on cognitive impairment induced by scopolamine, a muscarinic antagonist, in rats. Scopolamine injection (1 mg/kg, i.p.) impaired performance in rats in the passive avoidance test as well as in water maze test and severely reduced cholinergic system reactivity, as indicated by reduced acetylcholine levels and increased acetylcholinesterase activity. Daily administration of EJE significantly increased step-through latency in the passive avoidance test, reduced escape latency, and increased time spent in the platform quadrant in the Morris water maze test. EJE protected against scopolamine-induced cholinergic system deficit, including reduced acetylcholine levels and increased acetylcholinesterase activity in whole brain homogenates. These results suggest that EJE provides a significant anti-amnesic effect against scopolamine-induced cholinergic system deficits and cognitive impairment.

Amelioration of Trimethyltin-induced Cognitive Impairment in ICR Mice by Perilla Oil (Trimethyltin 유도성 인지기능 저하 동물 모델에 대한 들기름의 개선효과)

  • Kang, Jin Yong;Park, Bo Kyeong;Seung, Tae Wan;Park, Chang Hyeon;Park, Seon Kyeong;Jin, Dong Eun;Kang, Sung Won;Choi, Sung-Gil;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.3
    • /
    • pp.373-379
    • /
    • 2015
  • This study aimed to investigate the anti-amnesic effect of perilla oil against trimethyltin (TMT)-induced learning and memory impairment in ICR mice. Perilla oil (2.5 mL/kg of body weight) and soybean oil (2.5 mL/kg of body weight) were administered orally to mice for 3 weeks, and at the end of the experimental period, cognitive behavior was examined by Y-maze and Morris water maze (MWM) tests. Behavioral tests showed that the mice treated with perilla oil had improved cognitive function compared to that in mice administered soybean oil. Analysis of brain tissue showed that perilla oil significantly lowered acetylcholinesterase activity and malondialdehyde (MDA) levels. Oxidized glutathione (GSH)-to-total GSH ratio also decreased from 10.4% to 5.3% in perilla oil-treated mice, but superoxide dismutase (SOD) activity increased from 11.7 to 14.2 U/mg protein. Therefore, these results suggest that the perilla oil could be a potential functional substance for improving cognitive function.

Study on Biochemical Pollutant Markers for Diagnosis of Marine Pollution III. Changes in Cholinesterase Activity of Flounder(Paralichthys olivaceus)in the Yellow Sea (해양오염의 진단을 위한 생화학적 오염지표에 관한 연구 III. 황해산 넙치(Paralichthys olivaceus)의 콜린에스테라아제 활성의 변화)

  • Choi, Jin-Ho;Kim, Dong-Woo;Moon, Young-Sil;Park, Chung-Kil;Yang, Dong-Beom
    • Journal of Life Science
    • /
    • v.7 no.1
    • /
    • pp.17-23
    • /
    • 1997
  • This study was designed as a part of efforts to investigate the biochemical pollutant markers for diagnosis of maine pollutions by changes in cholinesterase activity of the flounder (Paralichthys olivaceus)in Yellow Sea of Korea. Acetylcholinesterase (AChE) activities in brain and muscle of cultured flounders in Yellow Sea were remarkably lower (40-50% and 40-55%, respectively)than those of wild flounder in Pohang (control) of East Sea, but AChE activities in brain and muscle of wild flounders in Yellow Sea were significantly lower(15-40% and 25-35%, respectively)than those of wild flounder in Pohang of East Sea. Butyrylcholinesterase(BChE) activities in barin and muscle of cultured flounders in Yellow Sea were remarkably lower(70-75% and 65-75%, respectively) than those of wild flounder in Pohang of East Sea, but BChE activities in barin and muscle of wild flounders in Yellow Sea were significantly lower (15-40%and 25-35%, respectively)than those of wild flounder in Pohang of East Sea. Lactate dehydrogenase (LDH) activities in serum of cultured flounders in Yellow Sea were significantly 10-50% higher than those of wild flounder in Pohang of East Sea, but LDH activities in serum of wild flounders in Yellow Sea were significantly 20-25% higher than those of wild flounder in Pohang of East Sea. It suggests that AChE and BChE activities in brain and muscle of cultured and wild flounders of Yellow Sea may be used as the most effective mean in a biochemical markers for diagnosis of pollutant effects by organophosphorus pesticides.

  • PDF

Improvement Effect of Stachys sieboldii MIQ. According to Mixing Ratio of Calcium on Memory Impairment in Scopolamine-induced Dementia Rats (칼슘 배합 비율에 따른 초석잠의 scopolamine 치매유도 흰쥐에 대한 기억손상 개선 효과)

  • Choe, Da-Jeong;Ahn, Hee-Young;Kim, Young-Wan;Kim, Tae-Hoon;Kim, Man-do;Cho, Young-Su
    • Journal of Life Science
    • /
    • v.26 no.7
    • /
    • pp.812-818
    • /
    • 2016
  • The aim of this study was to investigate the anti-amnesic effect of Stachys sieboldii MIQ. according to the mixing ratio of calcium on scopolamine-induced learning and memory impairment, in vivo. At the end of the adaptation period, SD rats were divided into a normal group (N), a control group (C: scopolamine), a positive control group (PC: scopolamine + tacrine), and a sample group (S: scopolamine + Stachys sieboldii MIQ., 1CS: scopolamine + low calcium-mixed Stachys sieboldii MIQ., 5CS: scopolamine + high calcium-mixed Stachys sieboldii MIQ.), and were tested with learning and memory tests. The C and CS groups were found to have a decreased scopolamine-induced memory deficit in the Y-maze and water maze tests. Brain tissue analysis showed that the CS group decreased acetylcholinesterase (AChE) activity and increased acetylcholine (Ach) content, both of which are indicative of neuronal cell activity. From a light microscopy study, the nucleus of neurons in the hippocampus of the brain was more shrunken or condensed in the C group compared to the CS group. In the CS group, the damage to the neurons in the hippocampus of the brain was suppressed. These results suggest that Stachys sieboldii MIQ. according to the mixing ratio of calcium provides a significant anti-amnesic effect against scopolamine-induced cholinergic system deficits and cognitive impairment.

Cholinesterase Activity in the Dental Epithelium of Hamsters During Tooth Development

  • Yang, Jin-Young;Kim, Tak-Heun;Lee, Ju-Yeon;Jiang, Eun-Ha;Bae, Young;Cho, Eui-Sic
    • International Journal of Oral Biology
    • /
    • v.35 no.4
    • /
    • pp.169-175
    • /
    • 2010
  • Cholinesterase (ChE) is one of the most ubiquitous enzymes and in addition to its well characterized catalytic function, the morphogenetic involvement of ChE has also been demonstrated in neuronal tissues and in non-neuronal tissues such as bone and cartilage. We have previously reported that during mouse tooth development, acetylcholinesterase (AChE) activity is dynamically localized in the dental epithelium and its derivatives whereas butyrylcholinesterase (BuChE) activity is localized in the dental follicles. To test the functional conservation of ChE in tooth morphogenesis among different species, we performed cholinesterase histochemistry following the use of specific inhibitors of developing molar and incisors in the hamster from embryonic day 11 (E11) to postnatal day 1 (P1). In the developing molar in hamster, the localization of ChE activity was found to be very similar to that of the mouse. At the bud stage, no ChE activity was found in the tooth buds, but was first detectable in the dental epithelium and dental follicles at the cap and bell stages. AChE activity was found to be principally localized in the dental epithelium whereas BuChE activity was observed in the dental follicle. In contrast to the ChE activity in the molars, BuChE activity was specifically observed in the secretory ameloblasts of the incisors, whilst no AChE activity was found in the dental epithelium of incisors. The subtype and localization of ChE activity in the dental epithelium of the incisor thus differed from those of the molar in hamster. In addition, these patterns also differed from the ChE activity in the mouse incisor. These results strongly suggest that ChE may play roles in the differentiation of the dental epithelium and dental follicle in hamster, and that morphogenetic subtypes of ChE may be variable among species and tooth types.