DOI QR코드

DOI QR Code

Amelioration of Trimethyltin-induced Cognitive Impairment in ICR Mice by Perilla Oil

Trimethyltin 유도성 인지기능 저하 동물 모델에 대한 들기름의 개선효과

  • Kang, Jin Yong (Division of Applied Life Science (BK21 plus).Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Park, Bo Kyeong (Division of Applied Life Science (BK21 plus).Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Seung, Tae Wan (Division of Applied Life Science (BK21 plus).Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Park, Chang Hyeon (Division of Applied Life Science (BK21 plus).Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Park, Seon Kyeong (Division of Applied Life Science (BK21 plus).Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Jin, Dong Eun (Division of Applied Life Science (BK21 plus).Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Kang, Sung Won (S&T FOODS Co. Ltd.) ;
  • Choi, Sung-Gil (Division of Applied Life Science (BK21 plus).Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Heo, Ho Jin (Division of Applied Life Science (BK21 plus).Institute of Agriculture and Life Science, Gyeongsang National University)
  • 강진용 (경상대학교 응용생명과학부 (BK21 plus).농업생명과학연구원) ;
  • 박보경 (경상대학교 응용생명과학부 (BK21 plus).농업생명과학연구원) ;
  • 승태완 (경상대학교 응용생명과학부 (BK21 plus).농업생명과학연구원) ;
  • 박창현 (경상대학교 응용생명과학부 (BK21 plus).농업생명과학연구원) ;
  • 박선경 (경상대학교 응용생명과학부 (BK21 plus).농업생명과학연구원) ;
  • 진동은 (경상대학교 응용생명과학부 (BK21 plus).농업생명과학연구원) ;
  • 강성원 (에스엔티푸드 주식회사) ;
  • 최성길 (경상대학교 응용생명과학부 (BK21 plus).농업생명과학연구원) ;
  • 허호진 (경상대학교 응용생명과학부 (BK21 plus).농업생명과학연구원)
  • Received : 2015.01.19
  • Accepted : 2015.04.10
  • Published : 2015.06.30

Abstract

This study aimed to investigate the anti-amnesic effect of perilla oil against trimethyltin (TMT)-induced learning and memory impairment in ICR mice. Perilla oil (2.5 mL/kg of body weight) and soybean oil (2.5 mL/kg of body weight) were administered orally to mice for 3 weeks, and at the end of the experimental period, cognitive behavior was examined by Y-maze and Morris water maze (MWM) tests. Behavioral tests showed that the mice treated with perilla oil had improved cognitive function compared to that in mice administered soybean oil. Analysis of brain tissue showed that perilla oil significantly lowered acetylcholinesterase activity and malondialdehyde (MDA) levels. Oxidized glutathione (GSH)-to-total GSH ratio also decreased from 10.4% to 5.3% in perilla oil-treated mice, but superoxide dismutase (SOD) activity increased from 11.7 to 14.2 U/mg protein. Therefore, these results suggest that the perilla oil could be a potential functional substance for improving cognitive function.

본 연구에서는 들기름의 TMT 유도성 인지 기능 상실에 대한 개선 효과와 함께 가정에서 식용유로서 사용량이 많은 대두유와 그 효과를 비교 연구하였다. 실험에서 들기름과 대두유를 섭취한 마우스를 TMT로 인지 기능 손상을 유발하여 Y-maze test와 Morris water maze test 한 결과, 공간 인지 기능 및 학습능력 개선에 대해 대두유는 효과가 미비하였으나 들기름은 대조군과 유의적인 차이가 없는 정도의 유의적 개선 효과를 보였다. 동물 실험 후 mouse로부터 적출된 뇌 조직을 대상으로 AChE 활성, MDA 함량, SOD 활성 측정 및 산화된 glutathione 측정한 결과, 대두유는 TMT 단독 처리군의 경우와 유사한 반면 들기름은 TMT에 의해 손상을 입은 mice의 뇌 조직에서 AChE의 활성과 MDA 생성 및 GSH의 산화를 억제시킬 뿐만 아니라 SOD 활성을 유의성 있게 증가시킨 것으로 나타났다. 이러한 결과는 들기름에 존재하는 풍부한 생리 활성 물질로서 ${\omega}$-3계 지방산, 페놀화합물 그리고 비타민 E 등에 의한 것으로 사료된다. 결국 들기름은 상대적으로 우수한 인지 기능 개선 효과를 나타냈고, 이는 건강기능 식품으로서 고부가가치 소재로 활용될 수 있는 산업적 활용 가능성을 나타내는 것으로 판단된다.

Keywords

References

  1. Kidd PM. Alzheimer's disease, amnestic mild cognitive impairment, and age-associated memory impairment: Current understanding and progress toward integrative prevention. Altern. Med. Rev. 13: 85-115 (2008)
  2. Whitehouse PJ, Price DL, Struble RG, Clark AW, Coyle JT, Delon MR. Alzheimer's disease and senile dementia: Loss of neurons in the basal forebrain. Science 215: 1237-1239 (1982) https://doi.org/10.1126/science.7058341
  3. Choi GN, Kim JH, Kwak JH, Jeong CH, Jeong HR, Lee U, Heo HJ. Effect of quercetin on learning and memory performance in ICR mice under neurotoxic trimethyltin exposure. Food Chem. 132: 1019-1024 (2012) https://doi.org/10.1016/j.foodchem.2011.11.089
  4. Zhaoli M, Jinping C. Study on the composition of fatty acid, vitamin E content and physicochemical properties of perilla oil. J. Northwest Sci.-Tech. Univ. Agri. For. 34: 195-198 (2006)
  5. Longvah T, Deosthale YG. Chemical and nutritional sudies on hanshi (Perilla frutescens), a traditional oilseed from northeast India. J. Am. Oil Chem. Soc. 68: 781-784 (1991) https://doi.org/10.1007/BF02662172
  6. Lee JH, Park KH, Lee MH, Kim HT, Seo WD, Kim JY, Baek IY, Jang DS, Ha TJ. Identification, characterisation, and quantification of phenolic compounds in the antioxidant activity-containing fraction from the seeds of Korean perilla (Perilla frutescens) cultivars. Food Chem. 136: 843-852 (2013) https://doi.org/10.1016/j.foodchem.2012.08.057
  7. Feng J, Wang W, Yu C. Chemical composition and anti-inflammatory effects of the essential oils from Perilla frutescens leaf. Pharm. J. 23: 45-48 (2011)
  8. Deng YM, Xie QM, Zhang SJ, Yao HY, Zhang H. Anti-asthmatic effects of perilla seed oil in the guinea pig in vitro and in vivo. Planta Med. 73: 53-58 (2007) https://doi.org/10.1055/s-2006-957062
  9. Metcalfe LD, Schmitz AA, and Pelka JR. Rapid preparation of fatty acid esters from lipids for gas chromatographic analysis. Anal. Chem. 38: 514-515 (1966) https://doi.org/10.1021/ac60235a044
  10. Kim MJ, Choi SJ, Lim ST, Kim HK, Heo HJ, Kim EK, Jun WJ, Cho HY, Kim YJ, Shin DH. Ferulic acid supplementation prevents trimethyltin-induced cognitive deficits in mice. Biosci. Biotech. Bioch. 71: 1063-1068 (2007) https://doi.org/10.1271/bbb.60564
  11. Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Meth. 11: 47-60 (1984) https://doi.org/10.1016/0165-0270(84)90007-4
  12. Ellman GL, Courtney KD, Andres jr V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7: 88-90 (1961) https://doi.org/10.1016/0006-2952(61)90145-9
  13. Choi SJ, Kim MJ, Heo HJ, Kim JK, Jun WJ, Kim HK, Kim EK, Kim MO, Cho HY, Hwang HJ, Kim YJ, Shin DH. Ameliorative effect of 1,2-benzenedicarboxylic acid dinonyl ester against amyloid beta peptide-induced neurotoxicity. Amyloid. 16: 15-24 (2009) https://doi.org/10.1080/13506120802676997
  14. Umezawa M, Ohta A, Tojo H, Yagi H, Hosokawa M, Takeda T. Dietary ${\alpha}$-linolenate/linoleate balance influences learning and memory in the senescence-accelerated mouse (SAM). Brain Res. 669: 225-233 (1995) https://doi.org/10.1016/0006-8993(94)01250-L
  15. Lim SY, Suzuki H. Effect of dietary docosahexaenoic acid and phosphatidylcholine on maze behavior and fatty acid composition of plasma and brain lipids in mice. Int. J. Vitam. Nutr. Res. 70: 251-259 (2000) https://doi.org/10.1024/0300-9831.70.5.251
  16. Gamoh S, Hashimoto M, Sugioka K, Shahdat Hossain M, Hata N, Misawa Y, Masumura S. Chronic administration of docosahexaenoic acid improves reference memory-related learning ability in young rats. Neuroscience 93: 237-241 (1999) https://doi.org/10.1016/S0306-4522(99)00107-4
  17. Padley FB, Gunstone FD, Harwood JL. Occurrence and characteristics of oils and fats. Vol. III. pp. 37-158. In: The Lipid Handbook with CD-ROM. Gunstone FD, Harwood JL, Dijkstra AJ (eds). CRC Press, Inc., Boca Raton, FL, USA (2012)
  18. Yu QS, Holloway HW, Utsuki T, Brossi A, Greig NH. Synthesis of novel phenserine-based-selective inhibitors of butyrylcholinesterase for alzheimer's disease. J. Med. Chem. 42: 1855- 1861 (1999) https://doi.org/10.1021/jm980459s
  19. Talesa VN. Acetylcholinesterase in alzheimer's disease. Mech. Ageing Dev. 122: 1961- 1969 (2001) https://doi.org/10.1016/S0047-6374(01)00309-8
  20. Trabace L, Cassano T, Steardo L, Pietra C, Villetti G, Kendrick KM, Cuomo V. Biochemical and neurobehavioral profile of CHF2819, a novel, orally active acetylcholinesterase inhibitor for Alzheimer's disease. J. Pharmacol. Exp. Ther. 294: 187-194 (2000)
  21. Earley B, Burke M, Leonard BE. Behavioural, biochemical and histological effects of trimethytin (TMT) induced brain damage in the rat. Neurochem. Int. 21: 351-366 (1992) https://doi.org/10.1016/0197-0186(92)90186-U
  22. Loullis CC, Dean RL, Lippa AS, Clody DE, Coupet J. Hippocampal muscarinic receptor loss following trimethyl tin administration. Pharmacol. Biochem. Be. 22: 147-151 (1985) https://doi.org/10.1016/0091-3057(85)90498-8
  23. Kim JK, Bae HR, Kim MJ, Choi SJ, Cho HY, Hwang HJ, Kim YJ, Lim ST, Kim EK, Kim HK, Kim BY, Shin DH. Inhibitory effect of Poncirus trifoliate on acetylcholinesterase and attenuating activity against trimethyltin-induced learning and memory impairment. Biosci. Biotech. Bioch. 73: 1105-1112 (2009) https://doi.org/10.1271/bbb.80859
  24. Kim JK, Choi SJ, Bae H, Kim CR, Cho HY, Kim YJ, Lim ST, Kim CJ, Kim HK, Peterson S, Shin DH. Effects of methoxsalen from Poncirus trifoliata on acetylcholinesterase and trimethyltininduced learning and memory impairment. Biosci. Biotech. Bioch. 75: 1984-1989 (2011) https://doi.org/10.1271/bbb.110386
  25. Sclar DA, Skaer TL. Current concepts in the treatment of Alzheimer's disease. Clin. Ther. 14: 2-10 (1992)
  26. Chang NS, Ryu SM. Antioxidative effects of green tea powder diet against ethanol-induced oxidative damage in rat brain regions. J. Nutr. Health 34: 525-531 (2001)
  27. Hwang SZ, Ko YS. Studies on the constituents of Korean edible oils and fats-Part 5: Analysis of fatty acids in sesame and perilla oil by high performance liquid chromatography. J. Nutr. Health 15: 15-21 (1982)
  28. Hong SH, Kim MJ, Oh CH, Yoon SH, Song YO. Antiradical capacities of perilla, sesame and sunflower oil. J. Food Sci. Nutr. 15: 51-56 (2010) https://doi.org/10.3746/jfn.2010.15.1.051
  29. Klug D, Rabani J, Fridovich I. A direct demonstration of the catalytic action of superoxide dismutase through the use of pulse radiolysis. J. Biol. Chem. 247: 4839-4842 (1972)
  30. Kim HY, Yeo SI, Lee JT. Antioxidant effects of solvent fraction from Sanguisorbae officinalis L. with acetone. J. Appl. Biol. Chem. 54: 89-93 (2011) https://doi.org/10.3839/jabc.2011.016
  31. Nam JH, Park HS. Effect of quality and quantity of dietary fat on the status of tocopherol and lipid peroxidation of plasma tissue in rats. J. Nutr. Health 26: 566-577 (1993)
  32. Wohaieb SA, Godin DV. Alterations in free radical tissue-defense mechanisms in streptozocin-induced diabetes in rat: Effects of insulin treatment. Diabetes 36: 1014-1018 (1987) https://doi.org/10.2337/diab.36.9.1014
  33. Zaidi SMKR, Banu N. Antioxidant potential of vitamins A, E and C in modulating oxidative stress in rat brain. Clin. Chim. Acta. 340: 229-233 (2004) https://doi.org/10.1016/j.cccn.2003.11.003