• Title/Summary/Keyword: Accurate Assembly

Search Result 150, Processing Time 0.022 seconds

Optical Performance Evaluation of SIL Assembly with Lateral Shearing Interferometer (층 밀리 간섭계를 이용한 고체침지렌즈의 광학적 성능 평가)

  • Lee, Jin-Eui;Kim, Wan-Chin;Choi, Hyun;Kim, Tae-Seob;Yoon, Yong-Joong;Park, No-Cheol;Park, Young-Pil
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.4
    • /
    • pp.224-229
    • /
    • 2006
  • There has been studied flow to minimize the spot size to increase data capacity. Optical data storage devices are being developed near practical limits with wavelength and NA of 405nm and 0.85. There has been studied many types of next generation storage devices such as blu-ray multilayer system, probe based data storage and holographic data storage. Among these data storage devices, solid immersion lens(SIL) based near field recording (NFR) has been widely studied. In this system, SIL is the key component that focuses the laser beam with a very small size which enables ultra high data capacity. Therefore, optical performance evaluation system is required for SIL assembly. In this dissertation, a simple and accurate SIL assembly measurement method is proposed with wedge plate lateral shearing interferometer(LSI). Wedge plate LSI is cheaper than commercialized interferometer, robust to the vibration and the moving distance for phase shifting is large that is order of micrometer. We designed the thickness, wedge angle, material, surface quality and wavelength of wedge plate as 1mm, 0.02degree, fused silica, lamda/10(10-5) and 405nm, respectively. Also, we confirmed simulation and experimental results with quantitative analysis. This simple wedge plate LSI can be applied to different types of SIL such as solid immersion mirror(SIM), hemispherical, super-hemispherical and elliptical SIL.

  • PDF

A Study on the Simulation of Welding Deformation for accurate Assembling (고정밀도 조립을 위한 용접 변형의 해석에 관한 연구)

  • Sung, Ki-Chan;Jang, Kyung-Bok;Jung, Jin-Woo;Kang, Sung-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.4
    • /
    • pp.129-134
    • /
    • 2001
  • It is essential to predict the welding deformation at assembly stage, to increase productivity through mechanization and automation effectively. A practical analysis method appled for production engineering was proposed to simulate the deformation of arc welding, with an analytical model using finite element method solving thermal-elastic-plastic behavior. In this research, for accurate assembling, 3-D thermal-elastic-plastic finite element model is used to simulate the out-of-plane deformation caused by arc welding. Efforts have been made to find out the efficient method to improve the reliability and accuracy of the numerical calculation. Each of theories of small and large deformation is applied in solving 3-D thermal-elastic-plastic problem to compare with their efficiency about calculation imes and solution accuracy. When solid elements are used in a bending problem of a plate, phenomenon that the predictive deformation is more than that of actual survey is observed. To prevent this phenomenon, reduced integration method for element is employed instead of full integration that is generally used in 3-D thermal-elastic-plastic analysis.

  • PDF

Robust Force Control of a 6-Link Electro-Hydraulic Manipulator (전기 유압 매니플레이터의 강건 힘 제어)

  • Ahn, Kyoung-Kwan;Cho, Yong-Rae;Yang, Soon-Yong;Lee, Byung-Ryong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.4
    • /
    • pp.202-208
    • /
    • 2002
  • An electro-hydraulic manipulator using hydraulic actuators has many nonlinear elements, and its parameter fluctuations are greater than those of an electrically driven manipulator. So it is relatively difficult to realize not only stable contact work but also accurate force control for the autonomous assembly tasks using hydraulic manipulators. In this report, we applied a compliance control which is based on the position control by a disturbance observer for our manipulator system. And a reference trajectory modification method is proposed in order to achieve accurate force control even though the stiffness and position of environment change. Experimental results show that highly robust force tracking by a 6-link electro-hydraulic manipulator could be achieved under various environment conditions.

Force Control of One Pair of 6-Link Electro-Hydraulic Manipulators (Application to the Approaching of a Bolt and the Wrenching of a Nut Tasks) (한쌍의 6축 전기유압 매니퓰레이터를 이용한 힘 제어 (너트의 장착 및 체결 작업에의 응용))

  • Ahn, Kyung-Kwan;Yang, Soon-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.1
    • /
    • pp.15-20
    • /
    • 2002
  • An electro-hydraulic manipulator using hydraulic actuators has many nonlinear elements, and its parameter fluctuations are greater than those of an electrically driven manipulator. So it is relatively difficult to realize not only stable contact work but also accurate force control for the automatic assembly tasks using hydraulic manipulators. In this manuscript, we applied a compliance control, which is based on the position control by a disturbance observer for our manipulator system. A reference trajectory modification method is proposed in order to achieve accurate force control even though the stiffness and the position of the environment change. Experimental results show that highly robust force tracking by a 6-link electro-hydraulic manipulator could be achieved under various environment conditions. The proposed force control algorithm is applied to the approaching of bolt and the wrenching of nut tasks as one typical task in the maintenance work of live power electric line and is experimentally confirmed very effective for the task.

A Study on the Characteristic Analysis of NUDFET by FEM (FEM에 의한 NUDFET의 특성해석에 관한 연구)

  • Kim, Jong-Ryeul;Jung, Jong-Chuck;Kim, Young-Cig;Sung, Man-Young;Cho, Ho-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1247-1249
    • /
    • 1993
  • In this paper, NUDFET(NonUniformly Doped Field Effect Transistor) is presented as an alternative which offers the possibility of reducing the power necessary to operate switching circuits without a substantial loss in speed. The purpose of this NUDFET is to modify the electric field profile in order to cause carrier velocity saturation to occur at a lower voltage than it would occur in the uniformly doped device of the same channel length. The more MESFET and NUDFET circuits are realized, the more accurate model ins the performance of these devices become required. Analytic model ins was replaced by numerical analysis because of the complexity of device configuration. In this paper, FEM is selected because of simpler local mesh refinement and smaller computer memory than FDM. For accurate analysis, this paper has applied the Scharfetter-Gummel(S-G) Scheme and seven-point Gaussian Quadrature rule to assembly of the finite-element stiffness matrices and right-hand side vector of the semiconductor equations.

  • PDF

High performance 3D pin-by-pin neutron diffusion calculation based on 2D/1D decoupling method for accurate pin power estimation

  • Yoon, Jooil;Lee, Hyun Chul;Joo, Han Gyu;Kim, Hyeong Seog
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3543-3562
    • /
    • 2021
  • The methods and performance of a 3D pin-by-pin neutronics code based on the 2D/1D decoupling method are presented. The code was newly developed as an effort to achieve enhanced accuracy and high calculation performance that are sufficient for the use in practical nuclear design analyses. From the 3D diffusion-based finite difference method (FDM) formulation, decoupled planar formulations are established by treating pre-determined axial leakage as a source term. The decoupled axial problems are formulated with the radial leakage source term. To accelerate the pin-by-pin calculation, the two-level coarse mesh finite difference (CMFD) formulation, which consists of the multigroup node-wise CMFD and the two-group assembly-wise CMFD is implemented. To enhance the accuracy, both the discontinuity factor method and the super-homogenization (SPH) factor method are examined for pin-wise cross-section homogenization. The parallelization is achieved with the OpenMP package. The accuracy and performance of the pin-by-pin calculations are assessed with the VERA and APR1400 benchmark problems. It is demonstrated that pin-by-pin 2D/1D alternating calculations within the two-level 3D CMFD framework yield accurate solutions in about 30 s for the typical commercial core problems, on a parallel platform employing 32 threads.

A Study on Satellite Alignment Measurements Accuracy Improvement (인공위성 정렬 측정 정확도 향상을 위한 연구)

  • Choi, Jung Su;Kim, In-Gul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.12
    • /
    • pp.987-995
    • /
    • 2020
  • Accurate alignment between high-performance payloads and attitude control sensors is essential factor to guarantee accurate attitude orientation and high pointing stability of the satellite. Space craft developers often use theodolite measurement system for satellite alignment during ground AIT(Assembly Integration and Test) phase. When measuring theodolite, errors may occur due to line of sight error, tilting axis error, vertical index error, and vertical axis error. In addition, errors that can occur during alignment measurements with multiple theodolites are analyzed through the alignment cube measurements test. Based on the alignment cube measurements test, a technical method that can improve the alignment measurement accuracy was suggested and it's measurements results satisfied the satellite design requirements.

Design of Integrated Process-Based Model for Large Assembly Blocks Considering Resource Constraints in Shipbuilding (자원제약을 고려한 조선 대조립 공정의 통합 프로세스 기반 모델 설계)

  • Jeong, Eunsun;Jeong, Dongsu;Seo, Yoonho
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.2
    • /
    • pp.107-117
    • /
    • 2019
  • Because shipbuilding is single-product production with limited resources, production management technology is essential to manage the resources effectively and maximize the productivity of ship-process. Therefore, many shipbuilding companies are conducting research on ship production plan and process considering various constraints in the field by applying modeling and simulation. However, it is difficult to provide accurate production plan on sudden schedule and process changes, and to understand the interconnectivity between the processes that produce blocks in existing research. In addition, there are many differences between the production planning and field planning because detailed processes and quantity of blocks can not be considered. In this research, we propose the integrated process-based modeling method considering process-operation sequences, BOM(Bill of materials) and resource constraints of all the scheduled blocks in the indoor system. Through the integrated process-based model, it is easy for the user to grasp the assembly relationship, workspace and preliminary relationship of assembly process between the blocks in indoor system. Also, it is possible to obtain the overall production plan that maximizes resource efficiency without the separate simulation and resource modeling procedures because resource balancing that considers the amount of resource quantity shared in the indoor system is carried out.

Pneumatic circuit design and Performance test of Air balancer (에어밸런서 공압 회로의 설계 및 성능 실험)

  • Kim, D.S.;Bae, S.K.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.3 no.3
    • /
    • pp.20-24
    • /
    • 2006
  • Air balancer is a conveyance cargo-handling machine, used in assembly and process lines of car and machining industries. This can lift up an object, the weight of which is from 5 to 200 kg, and moves it to a position. As industrial technologies evolve, it is required to move an object and fit it into a specified position with greater accuracy, rather than performing simple tasks such as lifting objects up and down as conventional ones do. There is also a demand to handle an object with one hand, rather than with two hands,. Through designs of manifold unit for an air balancer function, pilot regulator unit to keep pressure constant, hand unit for an accurate load perception function, and air balancer circuit, this study enables everybody to work it with ease and convenience. Experiments and comparisons were conducted for the performance evaluation of the circuit.

  • PDF

SCARA robot calibration on off-line programming (오프라인 프로그래밍에서 스카라 로봇의 보정)

  • Jung, Sung-Woo;Son, Kwon;Lee, Min-Chul;Choi, Jae-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1832-1835
    • /
    • 1997
  • Off-line programming systems are widely spread in assembly lines of minute electronic products to huge offshore structures. Any OLP system has to be calibrated before the on-line robot tasks are performed because there are inherent differences between the CAD model on OLP and the real robot workspace. This paper uses simple geometric expressions to propose a calibration method applicable to an OLP for SCARA robots. A positioning task on the two-dimensional horizontal surface was used in the error analysis of a SCARA robot and the anaysis shows that the inaccuracy results from the two error sources non-zero offset angles of two rotational joints at the zero return and differences in link lengths. Pen marks on a sheet of plotting paper are used to determine the accurate data on the joint centers and link dimensions. The calculated offset angles and link lengths are fed back to the OLP for the calibration of the CAD model of the robot and task environments.

  • PDF