DOI QR코드

DOI QR Code

A Study on Satellite Alignment Measurements Accuracy Improvement

인공위성 정렬 측정 정확도 향상을 위한 연구

  • Received : 2020.09.14
  • Accepted : 2020.11.16
  • Published : 2020.12.01

Abstract

Accurate alignment between high-performance payloads and attitude control sensors is essential factor to guarantee accurate attitude orientation and high pointing stability of the satellite. Space craft developers often use theodolite measurement system for satellite alignment during ground AIT(Assembly Integration and Test) phase. When measuring theodolite, errors may occur due to line of sight error, tilting axis error, vertical index error, and vertical axis error. In addition, errors that can occur during alignment measurements with multiple theodolites are analyzed through the alignment cube measurements test. Based on the alignment cube measurements test, a technical method that can improve the alignment measurement accuracy was suggested and it's measurements results satisfied the satellite design requirements.

고성능 탑재체들과 자세제어 센서들 간의 정밀정렬은 인공위성의 정확한 자세지향 및 높은 지향 안정성을 위해 필수적이다. 위성 개발사들은 조립 및 시험기간 동안 위성 정렬을 위해 데오드라이트 측정 시스템을 주로 사용한다. 데오드라이트 측정 시 시선 방향 오차, 수평축의 오차, 수직방향 인덱스 오차 그리고 수직축 오차로 인해 측정오차가 발생할 수 있다. 이러한 오차들 뿐 아니라 다수의 데오드라이트를 사용한 측정 시 발생할 수 있는 오차들을 정렬큐브 측정실험을 통해 분석하였다. 정렬큐브 측정실험을 기반으로 정렬측정 정확도를 향상시킬 수 있는 방법이 제안되었고, 측정 결과 위성의 설계 요구조건도 만족시킬 수 있었다.

Keywords

References

  1. Yoon, Y. S. and Lee, D. J., "A Study on Measurement Error Factors of Theodolite System," Journal of the Korean Society of Manufacturing Technology Engineer, Vol. 12, No. 4, 2003, pp. 36-42.
  2. Hwang, K. T., Moon, G. W., Cho, C. L., Lee, D. W. and Lee, S. W., "A Study on Accurate Alignment Measurement of Dual Thruster Module Using Theodolite," Journal of the Korean Society of Mechanical Engineers, Vol. 36, No. 11, 2012, pp. 1399-1404. https://doi.org/10.3795/KSME-A.2012.36.11.1399
  3. Liu, H., Wang, W. and Wan, B., "Research on Theodolite Auto-Collimation Technique Based on Visual Image Analysis," Proceeding of IEEE 2nd ITNEC Conference, 2017, pp. 150-153.
  4. Lee, B. G., Kwon, J. W. and Yoon, Y. S., "Study on Measurement Accuracy by Auto-Collimation using Theodolite," Proceeding of the Korean Society of Precision Engineering Conference, 2005, pp. 1793-1796.
  5. Yoon, Y. S., Park, H, C., Son, Y. S. and Choi, J. Y., "A Study of Spacecraft Alignment Measurement with Theodolite," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 31, No. 10, 2003, pp. 105-111. https://doi.org/10.5139/JKSAS.2003.31.10.105
  6. Samuel, H., Dean, O., Joe, M., Viki, R., James, G. and Kyle, M., "Optical alignment of the Global Precipitation Measurement(GPM) Star Trackers," Proceeding of SPIE 8844, 2013.
  7. Daniel, A., Iulian, B. and Dragos, I., "Surveying Theodolite Between Past and Future," Journal of Young Scientist, Vol. 4, 2016, pp. 129-134.
  8. Whistler Alley Mathematics, "The Geometry of Surveying," http://whistleralley.com/surveying/, 2012.
  9. Choi, J. S., Moon, S. M., Yoon, Y. S., Kim, H. W. and Choi, S. B., "Deployable Communication Antenna Alignment for Geostationary Satellite," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 39, No. 3, 2010, pp. 279-288. https://doi.org/10.5139/JKSAS.2010.39.3.279