• Title/Summary/Keyword: Accuracy Simulation Algorithm

Search Result 811, Processing Time 0.023 seconds

A Study on a Fault Location Algorithm Using Wavelet Transform in Combined Transmission Systems (혼합송전계통에서 웨이브렛 변환을 이용한 고장점 탐색 알고리즘에 관한 연구)

  • Jeong, Chae-Gyun;Lee, Jong-Beom;Yun, Yang-Ung
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.5
    • /
    • pp.247-254
    • /
    • 2002
  • This paper describes a fault location algorithm in real combined transmission systems with underground power cable. The algorithm to calculate the fault location was developed using DWT wavelet transform and travelling wave occurred at fault point. And the proposed algorithm is also used the transient signal of one end in stead of the signal information of two ends. On the other hand, in this papers, the method to discriminate fault point between overhead line and cable section is also Proposed. Variety simulations were carried out to verify the accuracy and effectiveness of the proposed algorithm using EMTP/ATFDraw and Matlab. Simulation results show that the proposed method has the excellent ability for discrimination of fault section and fault location in combined transmission systems with power cables.

Convergence of the Filtered-x Least Mean Square Adaptive Algorithm for Active Noise Control of a Multiple Sinusoids (다중 정현파의 능동소음제어를 위한 Filtered-x 최소 평균제곱 적응 알고리듬 수렴 연구)

  • 이강승
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.4
    • /
    • pp.239-246
    • /
    • 2003
  • Application of the filtered-x Least Mean Square(LMS) adaptive filter to active noise control requires to estimate the transfer characteristics between the output and the error signal of the adaptive controller. In this paper, we derive the filtered-x adaptive noise control algorithm and analyze its convergence behavior when the acoustic noise consists of multiple sinusoids. The results of the convergence analysis of the filtered-x LMS algorithm indicate that the effects of the parameter estimation inaccuracy on the convergence behavior of the algorithm are characterized by two distinct components Phase estimation error and estimated gain. In particular, the convergence is shown to be strongly affected by the accuracy of the phase response estimate. Simulation results are presented to support the theoretical convergence analysis.

Speedup of EM Algorithm by Binning Data for Normal Mixtures (혼합정규분포의 모수 추정에서 구간도수 EM 알고리즘의 실행 속도 개선)

  • Oh, Chang-Hyuck
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.1
    • /
    • pp.1-11
    • /
    • 2008
  • For a large data set the high computational cost of estimating the parameters of normal mixtures with the conventional EM algorithm is crucially impedimental in applying the algorithm to the areas requiring high speed computation such as real-time speech recognition. Simulations show that the binned EM algorithm, being compared to the standard one, significantly reduces the cost of computation without loss in accuracy of the final estimates.

Extended Fault Location Algorithm Using the Estimated Remote Source Impedance for Parallel Transmission Lines

  • Ryu, Jeong-Hun;Kang, Sang-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2212-2219
    • /
    • 2018
  • This paper describes extended fault location algorithm using estimated remote source impedance. The method uses data only at the local end and the sequence current distribution factors for more accurate estimation. The proposed algorithm can respond to variation of the local and remote source impedance. Therefore, this method is especially useful for transmission lines interconnected to a wind farm that the source impedance varies continuously. The proposed algorithm is very insensitive to the variation in fault distance and fault resistance. The simulation results have shown the accuracy and effectiveness of the proposed algorithm.

Structural damage identification using cloud model based fruit fly optimization algorithm

  • Zheng, Tongyi;Liu, Jike;Luo, Weili;Lu, Zhongrong
    • Structural Engineering and Mechanics
    • /
    • v.67 no.3
    • /
    • pp.245-254
    • /
    • 2018
  • In this paper, a Cloud Model based Fruit Fly Optimization Algorithm (CMFOA) is presented for structural damage identification, which is a global optimization algorithm inspired by the foraging behavior of fruit fly swarm. It is assumed that damage only leads to the decrease in elementary stiffness. The differences on time-domain structural acceleration data are used to construct the objective function, which transforms the damaged identification problem of a structure into an optimization problem. The effectiveness, efficiency and accuracy of the CMFOA are demonstrated by two different numerical simulation structures, including a simply supported beam and a cantilevered plate. Numerical results show that the CMFOA has a better capacity for structural damage identification than the basic Fruit Fly Optimization Algorithm (FOA) and the CMFOA is not sensitive to measurement noise.

Partial Transmit Sequence Optimization Using Improved Harmony Search Algorithm for PAPR Reduction in OFDM

  • Singh, Mangal;Patra, Sarat Kumar
    • ETRI Journal
    • /
    • v.39 no.6
    • /
    • pp.782-793
    • /
    • 2017
  • This paper considers the use of the Partial Transmit Sequence (PTS) technique to reduce the Peak-to-Average Power Ratio (PAPR) of an Orthogonal Frequency Division Multiplexing signal in wireless communication systems. Search complexity is very high in the traditional PTS scheme because it involves an extensive random search over all combinations of allowed phase vectors, and it increases exponentially with the number of phase vectors. In this paper, a suboptimal metaheuristic algorithm for phase optimization based on an improved harmony search (IHS) is applied to explore the optimal combination of phase vectors that provides improved performance compared with existing evolutionary algorithms such as the harmony search algorithm and firefly algorithm. IHS enhances the accuracy and convergence rate of the conventional algorithms with very few parameters to adjust. Simulation results show that an improved harmony search-based PTS algorithm can achieve a significant reduction in PAPR using a simple network structure compared with conventional algorithms.

Earthquake Event Auto Detection Algorithm using Accumulated Time-Frequency Changes and Variable Threshold (시간-주파수 누적 변화량과 가변 임계값을 이용한 지진 이벤트 자동 검출 알고리즘)

  • Choi, Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.8
    • /
    • pp.1179-1185
    • /
    • 2012
  • This paper presents a new approach for the detection of seismic events using accumulated changes on time-frequency domain and variable threshold. To detect seismic P-wave arrivals with rapidness and accuracy, it is that the changes on the time and the frequency domains are simultaneously used. Their changes are parameters appropriated to reflect characteristics of earthquakes over moderate magnitude(${\geq}$ magnitude 4.0) and microearthquakes. In addition, adaptively controlled threshold values can prevent false P-wave detections due to low SNR. We tested our method on real earthquakes those have various magnitudes. The proposed algorithm gives a good detection performance and it is also comparable to STA/LTA algorithm in computational complexity. Computer simulation results shows that the proposed algorithm is superior to the conventional popular algorithm (STA/LTA) in the seismic P-wave detection.

Cardiac Disease Detection Using Modified Pan-Tompkins Algorithm

  • Rana, Amrita;Kim, Kyung Ki
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.13-16
    • /
    • 2019
  • The analysis of electrocardiogram (ECG) signals facilitates the detection of various abnormal conditions of the human heart. The QRS complex is the most critical part of the ECG waveform. Further, different diseases can be identified based on the QRS complex. In this paper, a new algorithm based on the well-known Pan-Tompkins algorithm has been proposed. In the proposed scheme, the QRS complex is initially extracted by removing the background noise. Subsequently, the R-R interval and heart rate are calculated to detect whether the ECG is normal or has some abnormalities such as tachycardia and bradycardia. The accuracy of the proposed algorithm is found to be almost the same as the Pan-Tompkins algorithm and increases the R peak detection processing speed. For this work, samples are used from the MIT-BIH Arrhythmia Database, and the simulation is carried out using MATLAB 2016a.

Tucker Modeling based Kronecker Constrained Block Sparse Algorithm

  • Zhang, Tingping;Fan, Shangang;Li, Yunyi;Gui, Guan;Ji, Yimu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.657-667
    • /
    • 2019
  • This paper studies synthetic aperture radar (SAR) imaging problem which the scatterers are often distributed in block sparse pattern. To exploiting the sparse geometrical feature, a Kronecker constrained SAR imaging algorithm is proposed by combining the block sparse characteristics with the multiway sparse reconstruction framework with Tucker modeling. We validate the proposed algorithm via real data and it shows that the our algorithm can achieve better accuracy and convergence than the reference methods even in the demanding environment. Meanwhile, the complexity is smaller than that of the existing methods. The simulation experiments confirmed the effectiveness of the algorithm as well.

FPGA Implementation of SC-FDE Timing Synchronization Algorithm

  • Ji, Suyuan;Chen, Chao;Zhang, Yu
    • Journal of Information Processing Systems
    • /
    • v.15 no.4
    • /
    • pp.890-903
    • /
    • 2019
  • The single carrier frequency domain equalization (SC-FDE) technology is an important part of the broadband wireless access communication system, which can effectively combat the frequency selective fading in the wireless channel. In SC-FDE communication system, the accuracy of timing synchronization directly affects the performance of the SC-FDE system. In this paper, on the basis of Schmidl timing synchronization algorithm a timing synchronization algorithm suitable for FPGA (field programmable gate array) implementation is proposed. In the FPGA implementation of the timing synchronization algorithm, the sliding window accumulation, quantization processing and amplitude reduction techniques are adopted to reduce the complexity in the implementation of FPGA. The simulation results show that the algorithm can effectively realize the timing synchronization function under the condition of reducing computational complexity and hardware overhead.