DOI QR코드

DOI QR Code

Structural damage identification using cloud model based fruit fly optimization algorithm

  • Zheng, Tongyi (Department of Applied Mechanics, Sun Yat-Sen University) ;
  • Liu, Jike (Department of Applied Mechanics, Sun Yat-Sen University) ;
  • Luo, Weili (School of Civil Engineering, Guangzhou University) ;
  • Lu, Zhongrong (Department of Applied Mechanics, Sun Yat-Sen University)
  • Received : 2018.03.30
  • Accepted : 2018.05.15
  • Published : 2018.08.10

Abstract

In this paper, a Cloud Model based Fruit Fly Optimization Algorithm (CMFOA) is presented for structural damage identification, which is a global optimization algorithm inspired by the foraging behavior of fruit fly swarm. It is assumed that damage only leads to the decrease in elementary stiffness. The differences on time-domain structural acceleration data are used to construct the objective function, which transforms the damaged identification problem of a structure into an optimization problem. The effectiveness, efficiency and accuracy of the CMFOA are demonstrated by two different numerical simulation structures, including a simply supported beam and a cantilevered plate. Numerical results show that the CMFOA has a better capacity for structural damage identification than the basic Fruit Fly Optimization Algorithm (FOA) and the CMFOA is not sensitive to measurement noise.

Keywords

Acknowledgement

Supported by : Central Universities

References

  1. Bakhtiari-Nejad, F., Rahai, A. and Esfandiari, A. (2005), "A structural damage detection method using static noisy data", Eng. Struct., 27(12), 1784-1793. https://doi.org/10.1016/j.engstruct.2005.04.019
  2. Cao, M., Ye, L., Zhou, L., Su, Z. and Bai, R. (2011), "Sensitivity of fundamental mode shape and static deflection for damage identification in cantilever beams", Mech. Syst. Sign. Pr., 25(2), 630-643. https://doi.org/10.1016/j.ymssp.2010.06.011
  3. Chen, P.W., Lin, W.Y., Huang, T.H. and Pan, W.T. (2013), "Using fruit fly optimization algorithm optimized grey model neural network to perform satisfaction analysis for e-business service", Appl. Math. Inform. Sci., 7(2), 459-465. https://doi.org/10.12785/amis/072L12
  4. Daei, M. and Mirmohammadi, S.H. (2015), "A flexibility method for structural damage identification using continuous ant colony optimization", Multidiscipl. Model. Mater. Struct., 11(2), 186-201. https://doi.org/10.1108/MMMS-05-2014-0027
  5. Ding, Z.H., Huang, M. and Lu, Z.R. (2016), "Structural damage detection using artificial bee colony algorithm with hybrid search strategy", Swarm Evol. Comput., 28, 1-13. https://doi.org/10.1016/j.swevo.2015.10.010
  6. Fu, Y.Z., Lu, Z.R. and Liu, J.K. (2013), "Damage identification in plates using finite element model updating in time domain", J. Sound Vibr., 332(26), 7018-7032. https://doi.org/10.1016/j.jsv.2013.08.028
  7. Gao, F. and Lu, Y. (2009), "An acceleration residual generation approach for structural damage identification", J. Sound Vibr., 319(1-2), 163-181. https://doi.org/10.1016/j.jsv.2008.06.014
  8. Guo, H. (2017), "Structural multi-damage identification based on strain energy and micro-search artificial fish swarm algorithm", J. Vibroeng., 19(5), 3255-3270. https://doi.org/10.21595/jve.2017.17503
  9. Hosseinzadeh, A.Z., Amiri, G.G. and Koo, K.Y. (2015), "Optimization-based method for structural damage localization and quantification by means of static displacements computed by flexibility matrix", Eng. Optim., 48(4), 543-561.
  10. Kim, J.T., Ryu, Y.S., Cho, H.M. and Stubbs, N. (2003), "Damage identification in beam-type structures: Frequency-based method vs mode-shape-based method", Eng. Struct., 25(1), 57-67. https://doi.org/10.1016/S0141-0296(02)00118-9
  11. Li, J. and Hao, H. (2016), "A review of recent research advances on structural health monitoring in Western Australia", Struct. Monitor. Mainten., 3(1), 33-49. https://doi.org/10.12989/smm.2016.3.1.033
  12. Li, J., Hao, H. and Lo, J.V. (2015), "Structural damage identification with power spectral density transmissibility: Numerical and experimental studies", Smart Struct. Syst., 15(1), 15-40. https://doi.org/10.12989/sss.2015.15.1.015
  13. Li, S. and Lu, Z.R. (2015), "Multi-swarm fruit fly optimization algorithm for structural damage identification", Struct. Eng. Mech., 56(3), 409-422. https://doi.org/10.12989/sem.2015.56.3.409
  14. Majumdar, A., Nanda, B., Maiti, D.K. and Maity, D. (2014), "Structural damage detection based on modal parameters using continuous ant colony optimization", Adv. Civil Eng., 110-123.
  15. Nobahari, M., Ghasemi, M.R. and Shabakhty, N. (2017), "Truss structure damage identification using residual force vector and genetic algorithm", Steel Compos. Struct., 25(4), 485-496. https://doi.org/10.12989/SCS.2017.25.4.485
  16. Pan, Q.K., Sang, H.Y., Duan, J.H. and Gao, L. (2014), "An improved fruit fly optimization algorithm for continuous function optimization problems", Knowl-Bas. Syst., 62(5), 69-83. https://doi.org/10.1016/j.knosys.2014.02.021
  17. Pan, W.T. (2011), "A new evolutionary computation approach: Fruit fly optimization algorithm", Proceedings of the Conference on Digital Technology and Innovation Management, Taipei, Taiwan.
  18. Pan, W.T. (2012), "A new fruit fly optimization algorithm: Taking the financial distress model", Knowl-Bas. Syst., 26(2), 69-74. https://doi.org/10.1016/j.knosys.2011.07.001
  19. Pan, W.T. (2013), "Using modified fruit fly optimization algorithm to perform the function test and case studies", Connect. Sci., 25(2-3), 151-160. https://doi.org/10.1080/09540091.2013.854735
  20. Patel, S., Peacock, S.M., McKinley, R.K., Clark Carter, D. and Watson, P.J. (2011), "Aircraft failure detection and identification over an extended flight envelope using an artificial immune system", Aeronaut. J., 115(1163), 43-55. https://doi.org/10.1017/S0001924000005352
  21. Perera, R. and Ruiz, A. (2008), "A multistage FE updating procedure for damage identification in large scale structural based on multiobjective evolutionary optimization", Mech. Syst. Sign. Pr., 22(4), 970-991. https://doi.org/10.1016/j.ymssp.2007.10.004
  22. Saada, M.M., Arafa, M.H. and Nassef, A.O. (2013), "Finite element model updating approach to damage identification in beams using particle swarm optimization", Eng. Optim., 45(6), 677-696. https://doi.org/10.1080/0305215X.2012.704026
  23. Sun, H., Lus, H. and Betti, R. (2013), "Identification of structural models using a modified artificial bee colony algorithm", Comput. Struct., 116(1), 59-74. https://doi.org/10.1016/j.compstruc.2012.10.017
  24. Sun, Z.G., Chen, Y.F., Shao, Y., Shi, J. and Li, Y.N. (2014), "Model test study on damage identification for suspension bridges", Eng. Mech., 31(6), 132-137.
  25. Teixeira, J.S., Stutz, L.T., Knupp, D.C. and Neto, A.J.S. (2016), "Structural damage identification via time domain response and Markov Chain Monte Carlo method", Inv. Probl. Sci. En., 25(6), 1-27.
  26. Wang, J.Y. and Ni, Y.Q. (2015), "Refinement of damage identification capability of neural network techniques in application to a suspension bridge", Struct. Monitor. Maint., 2(1), 77-93. https://doi.org/10.12989/smm.2015.2.1.077
  27. Wei, J.J. (2011), "Comparison of analytical approaches to tall building structural damage identification based on measured dynamic characteristics", Appl. Mech. Mater., 105-107, 1081-1086. https://doi.org/10.4028/www.scientific.net/AMM.105-107.1081
  28. Wei, Z., Liu, J. and Lu, Z. (2012), "Structural damage detection using improved particle swarm optimization", Ksii T. Internet Inf. Syst., 6(18), 4733-4746.
  29. Wu, L., Zuo, C. and Zhang, H. (2015), "A cloud model based fruit fly optimization algorithm", Knowl-Bas. Syst., 89(C), 603-617. https://doi.org/10.1016/j.knosys.2015.09.006
  30. Xia, Y., Hao, H., Brownjohn, J.M.W. and Xia, P.Q. (2002), "Damage identification of structures with uncertain frequency and mode shape data", Earthq. Eng. Struct. D., 31(5), 1053-1066. https://doi.org/10.1002/eqe.137
  31. Xu, H.J., Ding, Z.H., Lu, Z.R. and Liu, J.K. (2015), "Structural damage detection based on chaotic artificial bee colony algorithm", Struct. Eng. Mech., 55(6), 1223-1239. https://doi.org/10.12989/sem.2015.55.6.1223
  32. Yuan, X., Dai, X., Zhao, J. and He, Q. (2014), "On a novel multiswarm fruit fly optimization algorithm and its application", Appl. Math. Comput., 233(3), 260-271.
  33. Zhang, L.T., Li, Z.X. and Fei, Q.G. (2007), "Study on structural damage identification using acceleration data in time domain", J. Vibr. Shock, 26(9), 138-141.
  34. Zhu, H.P., Mao, L. and Weng, S. (2014), "A sensitivity-based structural damage identification method with unknown input excitation using transmissibility concept", J. Sound Vibr., 333(26), 7135-7150. https://doi.org/10.1016/j.jsv.2014.08.022

Cited by

  1. An Improved Squirrel Search Algorithm for Optimization vol.2019, pp.None, 2018, https://doi.org/10.1155/2019/6291968
  2. An Enhanced Lightning Attachment Procedure Optimization with Quasi-Opposition-Based Learning and Dimensional Search Strategies vol.2019, pp.None, 2018, https://doi.org/10.1155/2019/1589303