
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 2, Feb. 2019                                           657 
Copyright ⓒ 2019 KSII 

Tucker Modeling based Kronecker 
Constrained Block Sparse Algorithm 

 
Tingping Zhang1, Shangang Fan2, Yunyi Li2, Guan Gui2*, and Yimu Ji3 

1 School of Information Science and Engineering, Chongqing Jiaotong University, Chongqing, 400074 China. 
[E-mail: ztp@cqjtu.edu.cn] 

2 College of Telecommunication and Information Engineering, Nanjing University of Posts and 
Telecommunications, Nanjing 210003, China.  

[E-mails: { 2016020221, guiguan}@njupt.edu.cn] 
3 School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China. 

[Email: jiym@njupt.edu.cn] 
*Corresponding author: Guan Gui 

 
Received September 15, 2017; revised June 30, 2018; revised August 7, 2018; accepted August 20, 2018;  

published February 28, 2019 
 

 

Abstract 
 

This paper studies synthetic aperture radar (SAR) imaging problem which the scatterers are 
often distributed in block sparse pattern. To exploiting the sparse geometrical feature, a 
Kronecker constrained SAR imaging algorithm is proposed by combining the block sparse 
characteristics with the multiway sparse reconstruction framework with Tucker modeling. We 
validate the proposed algorithm via real data and it shows that the our  algorithm can achieve 
better accuracy and convergence than the reference methods even in the demanding 
environment. Meanwhile, the complexity is smaller than that of the existing methods. The 
simulation experiments confirmed the effectiveness of the algorithm as well. 
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1. Introduction 
The synthetic aperture radar (SAR) is a promising radar that is employed to reconstruct a 
two-dimensional or three-dimensional images of desired objects. SAR has been widely 
applied in many fields in recent decades [1], [2]. The quality of the SAR image is often 
influenced by many factors. For instance, it is restricted by the Nyquist sampling limit, the 
receiver needs a high sampling rate for the wideband waveform, which causes to the large 
resource consumption for data storage and processing. Besides, imaging quality of the 
traditional methods, such as polar format algorithm (PFA) [3], [4], may be degraded 
significantly by noises and sidelobe disturbance. Recently, compressed sensing (CS) 
technology has been utilized for  SAR imaging, by which the necessary information can be 
obtained by the sampling rate which is much lower than Nyquist sampling limit [5]. The SAR 
imaging methods in the CS framework have the robustness to noise and sidelobe disturbance 
[5]-[7]. However, these studies merely consider the spatial sparsity of the observation, which 
don’t exploit the structural characteristics of scatterers.It is the fact that the scatterers can be 
aggregated together as nonzero blocks [2], [7].  In 2016, a CS based SAR imaging algorithm is 
proposed using the Bayesian learning procedure with consideration of the structured sparsity 
constraint [8]. But this kind of procedure requires the  interesting signal signal data rigidly to 
match with the model since it introduces the multi-level random model. 
 

 

Fig. 1. Figure illustration of SAR geometry for point scatterers. 

      In order to solve the existing problems and obtain a better SAR imaging performance, this 
paper investigates a tensor decomposition-based CS method which can make use of the block 
sparsity of scatterers, where tensor refers to the multidimensional array [9]. Usually, the 
signals in practice are multidimensional and highly structured [10]. Tensor decomposition is 
appropriate to handle such higher-order data, so it has been studied extensively in recent years 
[10]-[12]. Because there exist curse of dimensionality in tensor signal processing [10], [13], 
[14], researches are mainly focused on how to take advantage of the sparsity of signals [15], 
[16]. In the SAR imaging area, there has few work combining sparse reconstruction with the 
tensor decomposition until now. Inspired by the research of higher-order CS in hyperspectral 
imaging [17], [18], this paper formulizes the echo signal of SAR as a tucker model and then 
develops an imaging algorithm by using the block sparsity of target scene, as shown in Fig. 1. 
Experiments are conducted to validate the our proposed algorithm.  

O
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       The remainder of our paper can be organized as follows. In the Section 2, we introduces 
the received signal model of point scattering target; Section 3 describes the tensor modeling 
based on the tucker decomposition; The proposed algorithm is introduced in Section 4, and the 
Section 5 will demonstrate several typical simulations to evaluate our proposed method, and 
makes detailed comparisons with conventional schemes in performance; Finally, we will 
conclude this paper. 

2. Signal Model 
      Some necessary notions are explained as follows. The italic letter denotes the scalar, e.g., 
x ; the bold italic letters indicate vector and matrix, respectively, e.g., x  and X ;  the 
calligraphic capital letter indicate the tenso, e.g.,  ; the script letter presents the index of a set, 
e.g.,  X ; the ℓ0-norm 0

x  equals to the nonzeros number in x ; 
F

  is the Frobenius-norm 
of tensor  ; the operator ⊗  is denoted as Kronecker product operation between two matrices; 
the n×  presents the mode-𝑛𝑛 product operation, where the mode denotes the order of a tensor 
[9]. 
       Consider the spotlight SAR and the geometry is depicted in Fig. 1. The parameters θ  and 
φ  denote respectively, the azimuth and pitch angle of the radio wave. 0 0 0, ) ( ,R x y z  represents 
the distance between the target and antenna at 0 0 0, ,( ) x y z ; cR  indicates the distance between 
the center of the scene and the antenna. Then the received signal can be formulated as 

 ( )
, ,

( , ) ( ) ( )
x y z

y t) g x)y)z s t x)y)zt φ τ= −∑                                              (1) 

where ( )g x)y)z  indicates the scattering function of the target located at ( )x)y)z ; ( )s t  is the 
autocorrelation function for transmitted signal. After transformation to the frequency domain, 
the Eq. (1) is transformed as 

 ( ), ,
, ,

( , , ) ( ) ( , , ) exp ( , , )x y z
x y z

Y f C f g x y z H fθ φ θ φ= ∑                                  (2) 

where ( ), , ( , , ) (4 ) cos cos cos sin sinx y zH c j c xc yc zcθ φ π θ φ θ φ θ= + +  is the phase factor [19]. The 
constant term ( ) ( )exp( 2 )cC f S f j fp τ= −  can be ignored, where ( )S f  is the Fourier transform 
of the autocorrelation function of transmitted signal;  2c cR cτ =  denotes the propagation time, 
where 𝑐𝑐 is the speed of light. 
      Because of the coupled parameters in (2), it is necessary to implement an interpolation 
method for decoupling [2]. Thus polar coordinates are transformed into Cartesian coordinate 
system [20]. The numbers of grid points in , ,x y z   directions are 1 2 3, ,M M M  and the grid points 
in , ,f θ φ  directions are 1 2,  ,  3P P P . Defining the steering vector of the scatterer at , ,j k lx y z  as  
 , , , , , , 1 2 1 2 3[ (1,1,1),..., ( , 1),..., ( , , )]Tj k l j k l j k ld b b P P P P P= ，   

where ( ), , 1 2 3 1 2 3( , , ) exp (4 )( )j k l j p j p l pb p p p j c x u y v z wp= + + , the steering matrix P M×∈D  is 

1 2 3 1 2 31,1,1 , ,1 1,1, , ,[ ,..., ,..., ,..., ]M M M M M Md d d d=D  , where 1 2 3M M M M= × × , 1 2 3P P P P= × × . Then the 
received signal model can be represented as 

 =y Ds                                                                      (3) 
where 

1 2 3 1 2 31 1 1 1 1 1[ ( , , ),..., ( , , ),..., ( , , ),..., ( , , )]TM M M M M Mg x y z g x y z g x y z g x y z=s  . Considering the 

1 2 3 1 2 3( )p p p m m m,  -th element of 𝑫𝑫 is ( )1 1 2 2 33exp (4 )( )m p m p m pj c x u y v z wp + +  , the steering matrix 
can be expressed as 3 2 1= ⊗ ⊗D D D D . Hence, the received signal model can be formulated as 
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 ( )3 2 1= ⊗ ⊗y D D D s                                                           (4) 
 
Algorithm 1. The proposed algorithm using tensor-based block sparse constraint. 

 

3. Tucker decomposition for SAR model 
The tensor signal is a multidimensional data with more than two modes. The tensor can be 
expanded into a one-dimension vector, i.e., (1)vec( ) vec( )= =v Y  . Then the Tucker 
decomposition of   is 1 1 2 2 3... N N× × × ×D D D� � � �  [10], which can be written as 

 ( )1 1N N −= ⊗ ⊗ ⊗y D D D s                                                      (5) 
Because a 𝐾𝐾-sparse representation of signal y  exists a dictionary D , we have 

 0
,   . . s t K= ≤y Ds s                                                             (6) 

where K is referred to the sparsity. Since the columns of the dictionary is more than the rows, 
the system is undetermined. Because of the sparsity feature of the desired signal, then a 
solution can be achieved under the condition [21], 

 1 11
2 ( )

K
µ

 
< + 

 D
                                                                 (7) 

in which ( ) max ,i ji j
m

≠
=D a a   denotes the coherence coefficient of the matrix D . When the 

dictionary possesses Kronecker structure, i.e.,  1 1N N −⊗ ⊗ ⊗D D D , the coherence coefficient 
should be 1 1( ) max{ , , , }Nmmmm   =D  , with ( )n nµ µ= D  , 1,2, ,n N=  [21]. 

Input: Observation data   ; the number of maximum nonzero entries maxk ; dictionaries 

1 2{ , , , }ND D D  ; the threshold of error ε ; 

Output: Estimation of the scattering coefficients Ŝ ; 
Initialize the index set 1 = ∅ , 1,2,...,n N=  ; 

Let =  , ˆ 0S = , 1k = ; 
While 1 2 maxN k≤   and 

F
ε>R  do 

1. 
1

1 1 1 1 2
{ , , }

{ , , } arg max (:, ) (:, )
k k

N

k k T T
N N N N

i i
i i i i× × ×= R D D





   

2. Update the index set { }k
n n ni=   , 1, 2, ,i N=    

3. (:, )n n n=B D   
4. Substitute ( 1,2, , )n n N=B B  into (8), combining Cholesky decomposition, obtain the 

estimates of nonzero coefficients nzs ; 
5. Reshape nzs  to the tensor form nzS ; 
6. Computing the residual  1 1nz N N= − × × ×R S B B BB2 2  
7. 1k k= +   
End While 
Reconstruct the scattering coefficients Ŝ  from nzS  and index set 1 2{ , , , }N=     , satisfying 

that 1 2
ˆ ( , , , )N nz=S S   . 
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4. The proposed algorithm for SAR imaging 
According to the Kronecker structure of SAR imaging model and the blocks structural 

characteristics of scatterers, in this section, we will propose our SAR imaging algorithm based 
on the block sparsity feature with Kronecker dictionary. 
Definition 1. Multiway block sparsity. 
        A tensor data   is called as ( 1 2, , , NK K K )-block sparse, if only nK  ( 1,2, ,n N=  ) 
columns in the factor matrices of its tucker decomposition need to be computed, i.e., 

 
( ) { }

1 2

1 1 2 2 3

, , , 1 2 1 2

... ,  s.t.
0 , , , , , ,

N

N N

i i i N Ni i i

= × × × ×

= ∀ ∉

D D D

s

 � � � �

  


 

  

in which { }1 2, , nK
n n n ni i i=  is a subset of the index set for mode-𝑛𝑛 ( 1,2, ,n N=  ). 

 
The Definition 1 indicates that nonzero elements in core tensor are concentrated within a 
subtensor ( )1 2, , , N     . Therefore, vec( )=v   is 𝐾𝐾-sparse (

1

K

ii
K K

=
=∏ ) with respect to 

the Kronecker dictionary 1 1N N −= ⊗ ⊗ ⊗D D D D . For the typical underdetermined system 
=y Dx , where the coefficient vector x  contains a series data segments with 1{ } =

M
m md , and the 

m-th segment (block) can be defined as [ ]mx . Define the ℓ0 -norm of x as 

0, 2
1

[( 0)]
M

bb
m

mf
=

= >∑x x , where 2
[ ]mx  is the ℓ2-norm of the m-th data block; 2

]( )[ 0b mf >x  

represents an indicator function which returns 1 if 2
[ ] 0m >x , otherwise returns 0. If  

0,b
k<x , x  is block k-sparse.. Defining  (:, )n n n=B D   , 1,2, ,n N=  , the tucker 

decomposition for the original signal (5) can be expressed as 
 1 1ˆ ( )N N nz−= ⊗ ⊗ ⊗y B B B sB                                                   (8) 

where K
nz ∈s   is the vectorization of all nonzero scattering coefficients. As a result, the 

solution of the problem can be given as 
 2

1 1 2
argmin ( )nz N N −= ⊗ ⊗ ⊗ −

r
s B B B r yB                                          (9) 

Denoting 1 1N N −⊗ ⊗ ⊗B B BB  as B , then the solution of equation (9) can be derived as 
1( )T

nz =s B B  . A more efficient calculation step can be added by means of Cholesky 
decomposition [22]. It is necessary to ensure that the nonzero elements of the core tensor must 
be included in a small subset of index during iterations. As the output, all nonzero elements 
and the  index set can be obtained; the expected scattering coefficients will be recovered as 
well. The algorithm flow is shown in Algorithm 1. 
       The complexity of the proposed algorithm is reduced to ( + )N NM P kP  ， comparing 
with OMP algorithm which has the complexity of (( ) +( ) )N NMP kP [21]. For a 

0 0 0( , , , )K K K  -block sparse multiway decomposition problem described as Section 3, a 
sparse representation can be guaranteed, if 0 0( ) 2 (1 ( 1) )N NK Kµ µ< − + −  , where 

{ }1 2max , , , Nmmmm   =  , and the iterations of the proposed method is less than 0NK , while the 
OMP is 0

NK . Here, it is necessary to note that the iteration number of our proposed method is 
between 𝐾𝐾0 and 𝑁𝑁𝐾𝐾0. After the maximum correlated atom is choiced in step.1 in Algorithm 1, 
the position of the ( )...× × ×M M M  multiway array determines the indices 1 , ,

k k
Ni i  to be 

added to the current n  subsets. There are two conditions about the computational cost. For 
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the better condition, a new index is incremented to each mode-n dictionary at every iteration. 
For the worse condition, only one new index is incremented to each mode at every iteration. As 
a consequence, the minimum number of iterations is  𝐾𝐾0  and the  maximum number of 
iterations is  𝑁𝑁𝐾𝐾0. This indicates that the proposed algorithm can estimate the scattering 
coefficients with much fewer computation burdens than the classic matching pursuit 
algorithm. 

5. Simulation experiments 
In this section will evluate the performance of our proposed algorithm through several 

numerical experiments. The experiments are classified as two parts: 1) SAR imaging 
implementations, including ideal point-scatterer simulation and real data experiment; 2) 
performance comparisons of the proposed algorithm with the existing methods, including two 
indicators of root mean square error (RMSE) and computational cost. Three algorithms are 
chosen as reference methods: PFA [3], [4], OMP [21] and CoSaMP [23]. All the experiments 
are conducted in the personal computer equipped with Windows 10 OS, Intel Core i7-5500U 
2.4GHz CPU, and 8GB RAM. 
 

Table 1.  Simulation parameters. 

Paramters Value 
Center frequency 9GHz 
Angle aperture 5o 

Angle resolution 5o 
sampling rate 50% 

 

5.1. Implementation for SAR Imaging 

        To test the effectiveness of the proposed method, two groups of experiments will be 
presented in the following, including the simulated ideal point targets and the practical 
measured data in SAR imaging. All the parameters are set as follows: the center frequency is 
set to 9 GHz; the bandwidth is 1 GHz and the frequency resolution is 0.01 GHz. What’s more, 
the angle aperture and the angle resolution are all set to 5o; and the subsampling rate is 50%. 
1) Simulations of ideal-point target: The simulation scenario presents 20 ideal point 

scatterers distributed randomly. When the SNR is set as 3 dB and 30 dB, the SAR imaging 
implementations are shown in Fig. 2. These two experiments are provided to show the 
imaging quality of the proposed method. For the high SNR scenarios, the imaging results 
show no distinct difference among all algorithms. But for the low SNR case, the imaging 
results of OMP and CoSaMP display many outliers, meanwhile PFA shows severe noisy 
ambiguity. In contrast, the imaging results of the proposed algorithm show less noisy 
points and output the correct images. 

2) Practical measured data applications: This group of experiments is carried out based on 
the real data of spotlight SAR. The observation target is a crawler-type engineering 
vehicle. The observation direction is ( , ) (90 ,50 )o oφ θ = . We set the observation angle 
samples number and the frequency samples number as both 101, thus the total pixels of 
scene image are 10201. In this work, the sparsity is set to 200. The SAR imaging 
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implementations are shown in Fig. 3. These experiments demonstrate that the result of 
PFA shows obvious imaging blur. Due to the sidelobe effect, PFA cannot perform well for 
adjacent targets or weak scattering targets. The classic matching pursuit methods, such as 
OMP and CoSaMP, also generate the imaging ambiguity, despite they perform much 
better than PFA. By contrast, the proposed algorithm eliminates these drawbacks and 
generates the correct images under the same scenario, which displays the effectiveness of 
our proposed algorithm in practical application. 

 

 

 

Fig. 2. SAR imaging results for ideal point scatterer model of different SNRs using four algorithms of 
PFA, OMP, CoSaMP and our proposed algorithm. 

 

5.2. Performance Comparison 

The definition of RMSE for SAR imaging model is 

 ( )2 2

2 2
1

1ˆ ˆRMSE( )
L

l l
lL =

= −∑s y As y                                                  (10) 

where l̂s  denotes the estimate values for scattering coefficients. The SNR range is 3~30dB, 
and 𝐿𝐿 is set to 500. The RMSE curves of the simulations for 10 scatterers and 50 scatterers, are 
shown in Fig. 4. 

The RMSE curves demonstrate the performance of the algorithms. The reconstruction 
error of PFA is obviously big at low SNR since its sensitivity to noise. From the results, we can 
find that matching pursuit methods of OMP and CoSamp are more robust to noise. The 
proposed algorithm outperforms the reference methods at the same SNR in both the cases of 
small number and large number of scattering points. Since the Kronecker structure 
information of signal is fully exploited, the RMSE of the proposed algorithm is still quite small 
even under the serious noise interference. 
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Fig. 3. SAR imaging for the practical measured data. 

 

Fig. 4. Performance comparison for two kinds of scatterers versus SNRs. 
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2) Computational cost: This simulation experiment surveys the requirements for 
computing resources. CPU operation time is considered as the evaluation indicator. The 
configuration of this experiment is the same as Section 5-1. The results of computational 
cost are shown in Table 1.  

 
Table 2. Average operation time of different SNRs. 

Times (s) SNR=3dB SNR=12dB SNR=21dB SNR=30dB 

PFA 0.01717 0.01832 0.02437 0.01693 

OMP 519.66 540.42 537.96 568.34 

CoSaMP 1.1292 1.0759 1.1439 1.1573 

Proposed Algorithm 0.04519 0.03927 0.05285 0.04662 

 

      The statistical results present that the PFA and the proposed algorithm are faster than OMP 
and CoSamp. However, the accuracy of PFA is the worst among all reference methods as 
demonstrated in Section 5-B(1). By contrast, OMP and CoSaMP perform better, but they 
require more computing resources. Especially OMP algorithm runs much time-consumingly 
since it must match every atom at each iteration step, which makes it unsuitable for the 
real-time applications. The proposed algorithm could not only run faster, but also can achieve 
the better imaging performance. 

6. Conclusion 
In this paper, we investigate a spotlight SAR imaging algorithm for point scattering targets 
based on Tucker tensor decomposition. In this work, the geometry feature, i.e., the block 
sparse distribution of scatterers for a typical SAR target scene has been exploited by the tensor 
modeling. For this purpose, the scattering parameters estimation is formulized as a multiway 
sparse reconstruction problem. Since this SAR imaging model has Kronecker structure to 
depict the block sparsity of scatterer distribution reasonably, the iterative convergence of the 
algorithm is obviously accelerated and the robustness against the interference is enhanced 
according to the theoretical analysis and numerical experiments, compared with the reference 
methods. These features imply that the proposed algorithm can be well applied in practical 
applications with real-time requirements. 
 

References 
[1]  J. C. Curlander and R. N. McDonough, Synthetic Aperture Radar: Systems and Signal Processing. 

Wiley-Interscience, New York, NY, USA, 1991. 
[2] D. H. Vu, “Advanced techniques for synthetic aperture radar image reconstruction,” Ph.D. 

dissertation, University of Florida, 2012. 
 https://pdfs.semanticscholar.org/89ee/5f3c06b32ab89532028bf9b1ab137ab5f2fd.pdf  

[3] Y. Yuan, J. Sun, and S. Mao, “PFA algorithm for airborne spotlight SAR imaging with nonideal 
motions,” IEE Proceedings-Radar, Sonar and Navigation, vol. 149, no. 4, pp. 174–182, 2002. 
Article (CrossRef Link)  

https://pdfs.semanticscholar.org/89ee/5f3c06b32ab89532028bf9b1ab137ab5f2fd.pdf
https://doi.org/doi:10.1049/ip-rsn:20020493


666                                       Tingping Zhang et al.: Tucker Modeling based Kronecker Constrained Block Sparse Algorithm 

[4] B. D. Rigling and R. L. Moses, “Polar format algorithm for bistatic SAR,” IEEE Transactions on 
Aerospace and Electronic Systems, vol. 40, no. 4, pp. 1147–1159, 2004. Article (CrossRef Link) 

[5] R. Baraniuk and P. Steeghs, “Compressive radar imaging,” in IEEE Radar Conference, Boston, 
April 2007, pp. 128–133. Article (CrossRef Link) 

[6] X. Zhang, G. Liao, S. Zhu, D. Yang, and W. Du, “Efficient compressed sensing method for 
moving-target imaging by exploiting the geometry information of the defocused results,” IEEE 
Geoscience and Remote Sensing Letters, vol. 12, no. 3, pp. 517–521, 2015.  
Article (CrossRef Link) 

[7] X. Cong, G. Gui, X. Li, G. Wen, X. Huang, and Q. Wan, “Object-level SAR imaging method with 
canonical scattering characterisation and inter-subdictionary interferences mitigation,” IET Radar, 
Sonar & Navigation, vol. 10, no. 4, pp. 784–790, 2016. Article (CrossRef Link) 

[8] L. Zhao, L. Wang, G. Bi, S. Li, L. Yang, and H. Zhang, “Structured sparsity-driven autofocus 
algorithm for high-resolution radar imagery,” Signal Processing, vol. 125, pp. 376–388, 2016. 
Article (CrossRef Link) 

[9] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,” SIAM Review, vol. 51, 
no. 3, pp. 455–500, 2009.  Article (CrossRef Link) 

[10] A. Cichocki, D. Mandic, L. De Lathauwer, G. Zhou, Q. Zhao, C. Caiafa, and H. A. Phan, “Tensor 
decompositions for signal processing applications: From two-way to multiway component 
analysis,” IEEE Signal Processing Magazine, vol. 32, no. 2, pp. 145–163, 2015.  
Article (CrossRef Link) 

[11] N. D. Sidiropoulos, R. Bro, and G. B. Giannakis, “Parallel factor analysis in sensor array 
processing,” IEEE Transactions on Signal Processing, vol. 48, no. 8, pp. 2377–2388, 2000.  
Article (CrossRef Link) 

[12] Y. F. Gao, L. Zou, and Q. Wan, “A two-dimensional arrival angles estimation for L-shaped array 
based on tensor decomposition,” AEU International Journal of Electronics and Communications, 
vol. 69, no. 4, pp. 736–744, 2015. Article (CrossRef Link) 

[13] D. L. Donoho et al., “High-dimensional data analysis: The curses and blessings of dimensionality,” 
AMS Math Challenges Lecture, pp. 1–32, 2000. Article (CrossRef Link) 

[14] I. V. Oseledets and E. E. Tyrtyshnikov, “Breaking the curse of dimensionality, or how to use svd in 
many dimensions,” SIAM Journal on Scientific Computing, vol. 31, no. 5, pp. 3744–3759, 2009. 
Article (CrossRef Link) 

[15] L.-H. Lim and P. Comon, “Multiarray signal processing: Tensor decomposition meets compressed 
sensing,” Comptes Rendus Mecanique, vol. 338, no. 6, pp. 311–320, 2010. Article (CrossRef Link) 

[16] N. D. Sidiropoulos and A. Kyrillidis, “Multi-way compressed sensing for sparse low-rank tensors,” 
IEEE Signal Processing Letters, vol. 19, no. 11, pp. 757–760, 2012. Article (CrossRef Link) 

[17] M. F. Duarte and Y. C. Eldar, “Structured compressed sensing: From theory to applications,” IEEE 
Transactions on Signal Processing, vol. 59, no. 9, pp. 4053–4085, 2011. Article (CrossRef Link) 

[18] C. F. Caiafa and A. Cichocki, “Multidimensional compressed sensing and their applications,” 
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 3, no. 6, pp. 
355–380, 2013. Article (CrossRef Link) 

[19] K. R. Varshney, “Joint anisotropy characterization and image formation in wide-angle synthetic 
aperture radar,” Ph.D. dissertation, Massachusetts Institute of Technology, 2006. 
https://dspace.mit.edu/handle/1721.1/37852  

[20] L. Greengard and J. Lee, “Accelerating the nonuniform fast Fourier transform,” SIAM Review, vol. 
46, no. 3, pp. 443–454, 2004. Article (CrossRef Link) 

https://doi.org/doi:10.1109/TAES.2004.1386870
http://dx.doi.org/doi:10.1109/RADAR.2007.374203
https://doi.org/doi:10.1109/LGRS.2014.2349035
https://doi.org/doi:10.1049/iet-rsn.2015.0385
http://dx.doi.org/doi:10.1016/j.sigpro.2016.02.004
http://dx.doi.org/doi:10.1137/07070111X
https://doi.org/doi:10.1109/MSP.2013.2297439
https://doi.org/doi:10.1109/78.852018
https://doi.org/doi:0.1016/j.aeue.2015.01.001
https://www.researchgate.net/publication/220049061_High-Dimensional_Data_Analysis_The_Curses_and_Blessings_of_Dimensionality
http://dx.doi.org/doi:10.1137/090748330
http://dx.doi.org/doi:10.1016/j.crme.2010.06.005
http://dx.doi.org/doi:10.1109/LSP.2012.2210872
http://dx.doi.org/doi:10.1109/TSP.2011.2161982
http://dx.doi.org/doi:10.1002/widm.1108
https://dspace.mit.edu/handle/1721.1/37852
http://dx.doi.org/doi:10.1137/S003614450343200X


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 2, February 2019                        667 

[21] J. A. Tropp, “Greed is good: Algorithmic results for sparse approximation,” IEEE Transactions on 
Information Theory, vol. 50, no. 10, pp. 2231–2242, 2004. Article (CrossRef Link) 

[22] R. Rubinstein, M. Zibulevsky, and M. Elad, “Efficient implementation of the K-SVD algorithm 
using batch orthogonal matching pursuit,” Computer Science Department, Technion-Israel 
Institute of Technology, Technical Report, 2008. 
http://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf  

[23] D. Needell and J. A. Tropp, “CoSaMP: Iterative signal recovery from incomplete and inaccurate 
samples,” Applied and Computational Harmonic Analysis, vol. 26, no. 3, pp. 301–321, 2009. 
Article (CrossRef Link) 

 
Tingping Zhang is an associate professor lecture in Chongqing Jiaotong University, 
Chongqing, China. Her research interests are radar imaging, compressive sensing, sparse 
dictionary designing, channel estimation, and advanced wireless techniques.   
 
 
 
 
 
 
Shanggang Fan is a lecture in Nanjing University of Posts and Telecommunications, 
Nanjing, China. His research interests are adaptive filter, compressive sensing, sparse 
dictionary designing, channel estimation, and advanced wireless techniques.   
 
 
 
 
 
 
Yunyi Li is a PhD student in Nanjing University of Posts and Telecommunications, Nanjing, 
China. His research interests are compressive sensing, channel estimation, and advanced 
wireless techniques.   
 
 
 
 
 
 
Guan Gui received the DrEng degree in Information and Communication Engineering from 
the University of Electronic Science and Technology of China (UESTC), Chengdu, China, in 
2012. Currently he is a professor in Nanjing University of Posts and Telecommunications, 
Nanjing, China. His research interests are deep learning, compressive sensing, and advanced 
wireless techniques.   
 
 
 
 

 
Yimu Ji is a professor in Nanjing University of Posts and Telecommunications, Nanjing, 
China. His research interests are big data and high performance analysis.   
 
 

https://doi.org/doi:10.1109/TIT.2004.834793
http://www.cs.technion.ac.il/%7Eronrubin/Publications/KSVD-OMP-v2.pdf
http://dx.doi.org/doi:10.1016/j.acha.2008.07.002

