• 제목/요약/키워드: Accelerometer sensitivity

검색결과 85건 처리시간 0.028초

A Simple Analytical Model for MEMS Cantilever Beam Piezoelectric Accelerometer and High Sensitivity Design for SHM (structural health monitoring) Applications

  • Raaja, Bhaskaran Prathish;Daniel, Rathnam Joseph;Sumangala, Koilmani
    • Transactions on Electrical and Electronic Materials
    • /
    • 제18권2호
    • /
    • pp.78-88
    • /
    • 2017
  • Cantilever beam MEMS piezoelectric accelerometers are the simplest and most widely used accelerometer structure. This paper discusses the design of a piezoelectric accelerometer exclusively for SHM applications. While such accelerometers need to operate at a lower frequency range, they also need to possess high sensitivity and low noise floor. The availability of a simple model for deflection, charge, and voltage sensitivities will make the accelerometer design procedure less cumbersome. However, a review of the open literature suggests that such a model has not yet been proposed. In addition, previous works either depended on FEM analysis or only reported on the fabrication and characterization of piezoelectric accelerometers. Hence, this paper presents, for the first time, a simple analytical model developed for the deflection, induced voltage, and charge sensitivity of a cantilever beam piezoelectric accelerometer.The model is then verified using FEM analysis for a range of different cases. Further, the model was validated by comparing the induced voltages of an accelerometer estimated using this model with experimental voltages measured in the accelerometer after fabrication. Subsequently, the design of an accelerometer is demonstrated for SHM applications using the analytical model developed in this work. The designed accelerometer has 60 mV/g voltage sensitivity and 2.4 pC/g charge sensitivity, which are relatively high values compared to those of the piezoresistive and capacitive accelerometers for SHM applications reported earlier.

진동 측정용 압전형 가속도센서의 압전특성 효과 (Influence of Effective Piezoelectric Properties on Performance of Piezoelectric Accelerometer for Vibration Measurements)

  • 권정락
    • 한국세라믹학회지
    • /
    • 제32권8호
    • /
    • pp.945-949
    • /
    • 1995
  • In order to investigate the performance of compression-type accelerometer on piezoelectric properties, PZT materials have been studied. The ring-shaped piezoelectric elements were prepared using commercial PZT powders by conventional ceramic process. Their estimated relative dielectric constant, piezoelectric charge constant (d33) and voltage constant (g33) values showed 390∼3400, (90∼593)×10-12 C/N and (19.5∼40.5)×10-3 V-m/N, respectively. The charge sensitivity of accelerometer is proportional to the piezoelectric charge constant value (d33) of PZT, but its voltage sensitivity is related with the piezoelectric voltage constant (g33). Since the mounted resonance frequency and sensitivity are dependent on the seismic mass as well as physical charateristics and size of PZT elements, the suitable considerations between two components are required for accelerometer's design.

  • PDF

High Shock-Resistant Design of Piezoresistive High-g Accelerometer

  • Yongle Lu;Zhen Qu;Jie Yang;Wenxin Wang;Wenbo Wang;Yu Liu
    • Journal of Information Processing Systems
    • /
    • 제19권2호
    • /
    • pp.173-188
    • /
    • 2023
  • To improve the shock-resistance of piezoresistive high-g accelerometer, we propose a design of piezoresistive high-g accelerometer. The accelerometer employs special-shaped proof masses system with a cross gap. Four tiny sensing beams are bonded above the cross gap. The expression of the deformation, natural frequency and damping is deduced, and the structural parameters are optimized. The accelerometer structure is simulated and verified by finite element method (FEM) simulation. The results show that the range of the accelerometer can reach 200,000 g, the natural frequency is 453.6 kHz, and the cross-axis sensitivity of X-axis and Y-axis is 0.25% and 0.11%, respectively, which can apply to the measurement of high shock. Contrastively, the cross-axis sensitivity of X-axis and Y-axis is respectively, reduced by 93.2% and 96.9%. The sensitivity of our accelerometer is 0.88 μV/g. It is of great value for the application of piezoresistive high-g accelerometer with high shock-resistance.

합산회로를 통하여 타축감도가 자체상쇄된 6빔 가속도센서의 제조 (Fabrication of six-beam accelerometer with self-eliminated off-axis sensitivity by summing circuit)

  • 심준환;김동권;이종현
    • 전자공학회논문지D
    • /
    • 제35D권2호
    • /
    • pp.33-39
    • /
    • 1998
  • A six-beam accelerometer with self-compensated off-axis sensitivity was fabricated onthe selectively diffused (111)-oriented n/n$^{+}$/n silicon substrates by a unique porous silicon micromachining technique, which has self-stip characteristics and highly seletive formation of porous silicon layer during anodic reaction. Also, the characteristics of the fabricated accelerometer were investigated. The sensitivity of the acceleormeter added up outputs of three bridges through a summing circuit was 0.68 mV/g and the nonlinearity was less than 2% of the full scale output. The measured first resonant frequency was 4.236 kHz. When the outputs of three bridges were compared to summing output of bridges obtained through summing circuit, the normal output for Z-axis acceleration exhibited the same value s summing outputs of three bridges without reduction of sensitivity and thus the sensitivity decrease due to additional beam was compensated. Although a maximum off-axis sensitivity in one bridge of the accelerometer showed 17% of normal sensitivity, the off axis sensitivity obtained from summing output of three bridges decreased to 1.0%. Therefore, the self-elimination of off-axis sensitivity can be simply realized by obtaining the output of the sensor through summing circuit.t.

  • PDF

충돌시험시 가속도 센서의 접착방법이 감도 변화에 미치는 영향 (Effect of Sensitivity Variation for Mounting Methods of Accelerometer in Crash Test)

  • 장원호;김기오;범현균;권성은
    • 한국자동차공학회논문집
    • /
    • 제16권6호
    • /
    • pp.115-120
    • /
    • 2008
  • There are many typesof accelerometer sensor. There was mainly used high-g accelerometer to obtain data for vehicle in crash test. Accelerometer was mounted on test vehicle with mounting blocks. Test result can be influenced by condition of mounting i.e. bonding material and type of block. These influences can be evaluated to variation of sensitivity in calibration test. In this paper, Calibration test were carried out for 3 types of bonding material i.e. stud, beewax and double side tape. Other factor was taken into consideration by 3-types for mounting block. All test was conducted by sinusoidal signal vibrator up to 4500Hz. In order to investigate influence for sensitivity from different input voltage in the calibrator, the same test was repeated. Test results were compared with standard accelerometer data. Relative sensitivities and phases were showed small difference in sensitivity for bonding materials with one block, but significant one for another block and different input voltage below 1000Hz.

Novel graphene-based optical MEMS accelerometer dependent on intensity modulation

  • Ahmadian, Mehdi;Jafari, Kian;Sharifi, Mohammad Javad
    • ETRI Journal
    • /
    • 제40권6호
    • /
    • pp.794-801
    • /
    • 2018
  • This paper proposes a novel graphene-based optical microelectromechanical systems MEMS accelerometer that is dependent on the intensity modulation and optical properties of graphene. The designed sensing system includes a multilayer graphene finger, a laser diode (LD) light source, a photodiode, and integrated optical waveguides. The proposed accelerometer provides several advantages, such as negligible cross-axis sensitivity, appropriate linearity behavior in the operation range, a relatively broad measurement range, and a significantly wider bandwidth when compared with other important contributions in the literature. Furthermore, the functional characteristics of the proposed device are designed analytically, and are then confirmed using numerical methods. Based on the simulation results, the functional characteristics are as follows: a mechanical sensitivity of 1,019 nm/g, an optical sensitivity of 145.7 %/g, a resonance frequency of 15,553 Hz, a bandwidth of 7 kHz, and a measurement range of ${\pm}10g$. Owing to the obtained functional characteristics, the proposed device is suitable for several applications in which high sensitivity and wide bandwidth are required simultaneously.

가속도계 영향을 제거한 소형 구조물의 동특성 모델 개선 (Model Updating in Small Structural Dynamics Model by Elimination of Mass Loading Effect of Accelerometer)

  • 이정윤
    • 한국소음진동공학회논문집
    • /
    • 제25권1호
    • /
    • pp.40-47
    • /
    • 2015
  • Dynamic response of any small structure is always affected by the mass of the attached accelerometer. This paper predicts the natural frequencies and frequency response functions by removing the mass loading effect from the accelerometer. This mass loading is studied on a simple cantilever beams by varying the location of accelerometer. By using sensitivity analysis with iteration method, accelerometer mass and location are obtained. The predicted natural frequencies of the small cantilever beam without the accelerometer's mass show good agreement with the structural re-analysis.

교량에서 발생하는 저주파진동 측정을 위한 가속도계 개발 (Development of an Accelerometer for Measuring Low Frequency Vibration in Bridge)

  • 박경조;최남섭
    • 동력기계공학회지
    • /
    • 제7권2호
    • /
    • pp.36-43
    • /
    • 2003
  • In this paper, the strain-gauge type accelerometer is developed. This type of accelerometer has simple structure and cost for manufacturing is cheap, compared with other types of accelerometer such as piezoelectric, capacitance and servo, etc. Also it is very sensitive to the low frequency vibration which is the prominent characteristics of the vibration occurring by vehicles moving across a bridge. Two prototype accelerometers are designed and manufactured based upon the FE(Finite Element) method and static and dynamic calibration tests are performed to check out the linearity, sensitivity and cross sensitivity, etc. Experimental results designate that the proposed accelerometer show reasonable performances compared to the commercial one.

  • PDF

p+ 실리콘 박막을 이용한 폴리실리콘 압저항 가속도계의 제작 및 측정 (Fabrication and Testing of a Polysilicon Piezoresistive Accelerometer using p+ Silicon Diaphragm)

  • 양의혁;정옥찬;양상식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 C
    • /
    • pp.1994-1996
    • /
    • 1996
  • This paper presents the fabrication and testing of a polysilicon piezoresistive accelerometer with p+ silicon diaphragm by simple process such as two step photolithography for the RIE process to form the cantilevers and a deep anisotropic etch process for the complete fabrication of the accelerometer. The fabricated accelerometer consists of a seismic mass and four cantilevers on which polysilicon piezoresistors are formed. The measurement of the output signal from the bridge circuit of the fabricated accelerometer is carried out with the HP 3582A spectrum analyzer. The analysis of the experimental result is showed in terms of the sensitivity and the resonant frequency. At atmospheric condition, the measurement values of the sensitivity and the resonant frequency are $11\;{\mu}V/Vg$ and 475 Hz, respectively.

  • PDF