• Title/Summary/Keyword: Acceleration section

Search Result 206, Processing Time 0.024 seconds

Acceleration of the Multi-Level Fast Multipole Algorithm using Double Interpolation Technique (이중 보간 기법을 이용한 MLFMA 가속기법)

  • Yun, Dal-Jae;Kim, Hyung-Ju;Lee, Jae-In;Yang, Seong-Jun;Yang, Woo-Yong;Bae, Jun-Woo;Myung, Noh-Hoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.311-319
    • /
    • 2019
  • This paper proposes an acceleration of the multi-level fast multipole algorithm(MLFMA) by using a double interpolation method. The MLFMA has been primarily used to conduct scattering analysis of electrically large targets, e.g. stealth aircraft. In the MLFMA, radiation functions of each basis functions are first precomputed, and then aggregated. After transfer calculations for the aggregations, each interaction is disaggregated, and then received in the testing function. The key idea of the proposed method is to decrease the sampling rates of the radiation and receiving functions. The computational complexity of the unit sphere integration in terms of the testing functions is thus highly alleviated. The remaining insufficient sampling rate is then complemented by using additional interpolation. We demonstrate the performance of the proposed method through radar cross-section(RCS) calculations for realistic aircraft.

A Study on Application of Force-based Track Irregularity Analysis Method (하중기반의 궤도틀림 분석기법 적용에 관한 연구)

  • Hwang, Seon-Kwon;Choi, Jung-Youl
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.547-552
    • /
    • 2022
  • In this study, shape-based track management by analyzing track irregularity was studied in terms of force-based track irregularity analysis by numerical analysis of wheel-rail interaction force using by the measured vertical irregularity. The effect of the vertical irregularity of the track due to the difference in track types on the wheel-rail interaction force and the track acceleration in the connecting section of the sleeper floating track and the direct fixation track on concrete bed were analyzed. As the results of this study, the measured vertical irregularity was directly affect the vertical wheel load (the wheel-rail interaction force) and the rail acceleration, and it has been demonstrated to change consistently. In this study, the adequacy and necessity of the force-based track irregularity analysis method was verified based on the wheel-rail interaction analysis using the the measured vertical irregularity.

The Kinematic Analysis of Jumeok Jireugi in Taekwondo of Security Martial Arts (경호무도의 태권도 주먹 지르기 동작 운동학적 분석)

  • Lee, See-Hwan;Yang, Young-Mo
    • Korean Security Journal
    • /
    • no.31
    • /
    • pp.187-207
    • /
    • 2012
  • The purpose of this study was to analyze the punching movement at the horseback riding stance, one of the basic movements in Taekwondo, with 3D images and further the kinetic variables such as time, velocity, angle, angular velocity, and angular acceleration according to the types. It also aimed to examine the characteristics of each type and suggest instructional methods for the right punching movement. For those purposes, three members from the College Taekwondo Poomse Demonstration Squad were put to the test. The research findings led to the following conclusions: 1. Performance Time of the Punching Movement : In Section 1, Type 1 and 2 recorded $0.24{\pm}0.07s$ and $0.42{\pm}0.08s$, respectively, for the punching movement at the horseback riding stance. While Type 1 took less performance time in the punching movement, Type 2 took less time for take back according to each section's percentage in the total performance time. 2. Variables of Linear Velocity and Linear Acceleration : Each type recorded different linear velocity for each aspect, but the highest linear velocity represented the moment of impact for each type. Type 2 recorded the highest linear velocity in Aspect 4, which was the moment of impact. 3. Variable of Joint Angle : There were no big outer differences in the joint angle during the punching movement between Type 1 in the aspect of impact and Type 2, but the individuals assumed dynamic positions in the punching movement of Type 2 with more diverse changes to the joint angle. 4. Variables of Angular Velocity and Angular Acceleration During the punching movement of Type 1, the Aspect 3 in the moment of impact recorded angular velocity of $0.79{\pm}0.02deg/s$, $0.91{\pm}0.04deg/s$, and $5.24{\pm}0.09deg/s$ at the pelvis, shoulder, and wrist respectively. During the punching movement of Type 2, the Aspect 3 in the moment of impact recorded angular velocity of $1.32{\pm}0.03deg/s$, $0.21{\pm}0.03deg/s$, and $4.98{\pm}0.08deg/$ at the shoulder, wrist, and pelvis, respectively. In the Aspect 3 in the moment of impact in Type 2, the angular acceleration at the right wrist joint was $176.24{\pm}1.11deg/s^2$, which was bigger than that in the moment of impact in Type 1.

  • PDF

Microscopic Traffic Analysis of Freeway Based on Vehicle Trajectory Data Using Drone Images (드론 영상을 활용한 차량궤적자료 기반 고속도로 미시적 교통분석)

  • Ko, Eunjeong;Kim, Soohee;Kim, Hyungjoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.6
    • /
    • pp.66-83
    • /
    • 2021
  • Vehicles experience changes in driving behavior due to the various facilities on the freeway. These sections may cause repetitive traffic congestion when the traffic volume increases, so safety issues may be raised. Therefore, the purpose of this study is to perform microscopic traffic analysis on these sections using drone images and to identify the causes of traffic problems. In the case of drone image, since trajectory data of individual vehicles can be obtained, empirical analysis of driving behavior is possible. The analysis section of this study was selected as the weaving section of Pangyo IC and the sag section of Seohae Bridge. First, the trajectory data was extracted through the drone image. And the microscopic traffic analysis performed on the speed, density, acceleration, and lane change through cell-unit analysis using Generalized definition method. This analysis results can be used as a basic study to identify the cause of the problem section in the freeway. Through this, we aim to improve the efficiency and convenience of traffic analysis.

Tracking Performance Enhancement of Space Launch Vehicle Based on Adaptive Kalman Filter (적응 칼만필터에 기반한 우주발사체 추적 성능 개선)

  • Han, Yoo Soo;Song, Ha Ryong;Lee, In Soo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.5
    • /
    • pp.39-49
    • /
    • 2017
  • A Space Launch Vehicle (SLV) for Launching Satellites Consists of Multi-stage Rockets for the Purpose of Efficient Flight and Accomplishes the Launch Mission through Flight Events such as Stage Separation, Engine Start and Stop. In this Process, the SLV is Supposed to Undergo the Processes of the Powered Flight Section in which the Engine Generates Thrust and the Ballistic Flight Section in which there is no Thrust Repeatedly. Because it is Difficult to Express these Flight Characteristics of the SLV as a Single Dynamics Model, much Research on Tracking Algorithms using Multiple Models has been Undertaken. In case of using the Multiple Model Tracking Algorithm, it is Expected to Improve the Tracking Performance of the SLV. However, it is Difficult to Select Proper Dynamics Models to be used and the Calculation Amount Increases due to the use of Multiple Models. In this Paper, we Propose a Method to Track the SLV with Diverse Flight Characteristics Efficiently by only Two Kalman Filters using Constant Acceleration Model and Adaptive Singer Model.

Comparison of clinical and histological characteristics of orthodontic tooth movement into recent and healed extraction sites combined with corticotomy in rats

  • Samruajbenjakun, Bancha;Kanokpongsak, Kaviya;Leethanakul, Chidchanok
    • The korean journal of orthodontics
    • /
    • v.48 no.6
    • /
    • pp.405-411
    • /
    • 2018
  • Objective: This study was performed to investigate the rate of tooth movement and histological characteristics of extraction sockets those were subjected to corticotomy. Methods: A split-mouth randomized controlled trial experiment was designed. Thirty-two adult, male Wistar rats were divided into 2 groups: healing extraction socket (H) and recent extraction socket (R); these groups were randomly classified into 4 subgroups (0/7/21/60 days). The first maxillary molar was extracted on 1 side and 2 months were allowed for complete bone healing; then, the corresponding molar was extracted on the other side and surgical intervention was performed at the mid-alveolar point of the first maxillary molar. Ten grams of continuous force was applied. The outcomes measured were rate of tooth movement, percentage of periodontal space and histological evaluation. The rate of tooth movement was calculated as the measured distance divided by the duration of molar movement. Histomorphometric evaluations were performed on the second and third maxillary molars. The Wilcoxon signed rank test was used to compare differences between the two groups. Results: There were no significant differences in the rates of tooth movement between H and R groups at any of the 4 time points. The histological appearance and percentage of periodontal space between the R and H groups also demonstrated no significant differences. Conclusions: The rates of orthodontic tooth movement into recent and healed socket sites did not differ between the groups. Histological analysis of tooth movement revealed regional acceleration during every time period.

Verification of Running Safety Evaluation Method for High-speed Railway (고속열차 주행안전성 평가법에 대한 검증 연구)

  • Ryu, Sang-Hyun;Kim, Sang-Soo;Kim, Dae-Sik;Kim, Sang-Young;Hong, June-Hee;Lee, Ki-Jun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.3
    • /
    • pp.310-317
    • /
    • 2014
  • The Next-generation High-speed Rail Technology Development Project was started in 2007 by the Korean Government with the aim of developing the core technologies for a high-speed electric multiple unit (EMU) railway system. This is the first attempt to develop a high-speed EMU railway. High-speed EMU trains have superior acceleration and deceleration compared to push-pull high-speed railways such as KTX(Korean Train eXpress). A prototype train was developed and tested on a high-speed line starting in 2012. The new train must maintain running safety during the test. Generally, the international standard (UIC518) is adopted to evaluate the running safety of trains. This method suggests that the test zone must have over 25 sections, and the length of each section must be 500 m. However, it is difficult to implement these test conditions for a real high-speed line. In this study, we analyzed the running safety using several test section lengths (100 m to 500 m) and compared the results. The results of this study will be used to establish a running safety evaluation method for high-speed EMU railways.

Experimental and numerical investigations on seismic performance of a super tall steel tower

  • He, Minjuan;Li, Zheng;Ma, Renle;Liang, Feng
    • Earthquakes and Structures
    • /
    • v.7 no.4
    • /
    • pp.571-586
    • /
    • 2014
  • This paper presents experimental and numerical study on seismic performance of a super tall steel tower structure. The steel tower, with a height of 388 meters, employs a steel space truss with spiral steel columns to serve as its main lateral load resisting system. Moreover, this space truss was surrounded by the spiral steel columns to form a steel mega system in order to support a 12-story platform building which is located from the height of 230 meters to 263 meters. A 1/40 scaled model for this tower structure was made and tested on shake table under a series of one- and two-dimensional earthquake excitations with gradually increasing acceleration amplitudes. The test model performed elastically up to the seismic excitations representing the earthquakes with a return period of 475 years, and the test model also survived with limited damages under the seismic excitations representing the earthquakes with a return period 2475 years. A finite element model for the prototype structure was further developed and verified. It was noted that the model predictions on dynamic properties and displacement responses agreed reasonably well with test results. The maximum inter-story drift of the tower structure was obtained, and the stress in the steel members was investigated. Results indicated that larger displacement responses were observed for the section from the height of 50 meters to 100 meters in the tower structure. For structural design, applicable measures should be adopted to increase the stiffness and ductility for this section in order to avoid excessive deformations, and to improve the serviceability of the prototype structure.

APOLLO2 YEAR 2010

  • Sanchez, Richard;Zmijarevi, Igor;Coste-Delclaux, M.;Masiello, Emiliano;Santandrea, Simone;Martinolli, Emanuele;Villate, Laurence;Schwartz, Nadine;Guler, Nathalie
    • Nuclear Engineering and Technology
    • /
    • v.42 no.5
    • /
    • pp.474-499
    • /
    • 2010
  • This paper presents the mostortant developments implemented in the APOLLO2 spectral code since its last general presentation at the 1999 M&C conference in Madrid. APOLLO2 has been provided with new capabilities in the domain of cross section self-shielding, including mixture effects and transfer matrix self-shielding, new or improved flux solvers (CPM for RZ geometry, heterogeneous cells for short MOC and the linear-surface scheme for long MOC), improved acceleration techniques ($DP_1$), that are also applied to thermal and external iterations, and a number of sophisticated modules and tools to help user calculations. The method of characteristics, which took over the collision probability method as the main flux solver of the code, allows for whole core two-dimensional heterogeneous calculations. A flux reconstruction technique leads to fast albeit accurate solutions used for industrial applications. The APOLLO2 code has been integrated (APOLLO2-A) within the $ARCADIA^{(R)}$ reactor code system of AREVA as cross section generator for PWR and BWR fuel assemblies. APOLLO2 is also extensively used by Electricite de France within its reactor calculation chain. A number of numerical examples are presented to illustrate APOLLO2 accuracy by comparison to Monte Carlo reference calculations. Results of the validation program are compared to the measured values on power plants and critical experiments.

Public Nuisance and Aggregate Assessments of the Dangri Crushed Stone Quarry Busan, Korea. (부산직할시 산양사리 당리석산의 채석공해 및 쇄석골재 평가연구)

  • 김항묵
    • Journal of the Korean Professional Engineers Association
    • /
    • v.16 no.3
    • /
    • pp.41-53
    • /
    • 1983
  • The Dangri Crushed Stone Quarry is located in Dangridong, Busan City, and around the estuary of the Nagdong River. The quarry is considered to be a very promised one in the urban area from the standpoints of the assessment of the aggregate rank, the environmental impacts and the transportation distance. The crushed stones for aggregate of the quarry marks the higher rank in the gravity, the absorption ratio, the abrasion ratio, and the stability in comparison with the JISA 5005. The basement vibrations of the residential section in the vicinity of the quarry, which are arised by the millisecond blasting at the quarry site using the gelatin dynamites less than 39kg in weight, are measured to assess the vibration nuisance. The values of acceleration and the magnitudes are less than eight gals and O on the Richter scale respectively, the vibration nuisance thus can be ignored in such scales of the experiments. The traffic vibrations of the residential section are slightly susceptible. In the experiments, the traffic vibrations appears to be sensibler to the basement than the explosion vibration. The explosion noises in the experiments are not checked not only on the RION Sound Level Meter but also to our ears. The values of traffic noises also are in the safety values of the noise nuisance. The crush dust suspends in the air toward the upper valley in the opposite side of the residential area because of the influences of the sea breeze and the valley wind in the daytime, and the monsoon and the topographic disposition. the dust nuisance thus would not be remained in problem. The quarry is operated in the daytime only. The traffic dust in the residential area will be reduced by the faultless pavement and the careful driving. The elaborate survey on the ridges and peaks surrounded the quarry is recommended to prevent in advance the accidents of the rock slide. Moreover, it is required to make an advisory committee to develop the industry and to save the techniques. The most important matter is the accomodation between the attitude of the enterprising man for the social responsibility to the public nuisance and the cooperative spirit of the inhabitants for the industry.

  • PDF