• Title/Summary/Keyword: Acceleration of Gravity

Search Result 198, Processing Time 0.029 seconds

Analysis of the Flow Rate for a Natural Cryogenic Circulation Loop during Acceleration and Low-gravity Section (극저온 자연순환회로의 가속 및 저중력 구간 유량 분석)

  • Baek, Seungwhan;Jung, Youngsuk;Cho, Kiejoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.5
    • /
    • pp.43-52
    • /
    • 2019
  • Cryogenic propellant rockets utilize a natural circulation loop of cryogenic fluid to cool the engine inlet temperature before launch. The geometric information about the circulation system, such as length and diameter of the pipes and the heat input to the system, defines the mass flow rate of the natural circulation loop. We performed experiments to verify the natural circulation mass flow rate and compared the results with the analytical results. The comparison of the mass flow rate between experiments and numerical simulations showed a 12% offset. We also included a prediction of the natural circulation flow rate in the low-gravity section and in the acceleration section in the upper stage of the launch vehicle. The oxygen tank should have 100 kPa(a) of pressure in the acceleration section to maintain a high flow rate for the natural circulation loop. In the low-gravity section, there should be an optimal tank pressure that leads to the maximum natural circulation flow rate.

Pulsar Polar Cap and Slot Gap Models: Confronting Fermi Data

  • Harding, Alice K.
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.3
    • /
    • pp.145-152
    • /
    • 2013
  • Rotation-powered pulsars are excellent laboratories for studying particle acceleration as well as fundamental physics of strong gravity, strong magnetic fields and relativity. Particle acceleration and high-energy emission from the polar caps is expected to occur in connection with electron-positron pair cascades. I will review acceleration and gamma-ray emission from the pulsar polar cap and associated slot gap. Predictions of these models can be tested with the data set on pulsars collected by the Large Area Telescope on the Fermi Gamma-Ray Telescope over the last four years, using both detailed light curve fitting, population synthesis and phase-resolved spectroscopy.

Investigation of Drop Test Method for Simulation of Low Gravity Environment (저중력 환경 모사를 위한 낙하 시험 방법 연구)

  • Baek, Seungwhan;Yu, Isang;Shin, Jaehyun;Park, Kwangkun;Jung, Youngsuk;Cho, Kiejoo;Oh, Seunghyub
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.4
    • /
    • pp.78-87
    • /
    • 2021
  • Understanding the liquid propellant transport phenomena in low gravity is essential for developing Korea Space Launch Vehicle (KSLV) upper-stage for the diversity of space missions. A low-gravity environment can be simulated via the free-fall method on the ground; however, the air drag is inevitable. To reduce air resistance during free fall, air-drag shield is usually adopted. In this study, the free-fall method was performed with an air-drag shield from a 7-m height tower. The acceleration of a falling object was measured and analyzed. Low gravity below 0.01 g was achieved during 1.2-s free fall with the air-drag shield. The minimum gravitational acceleration value at 1.2-s after free fall was ±0.005 g, which is comparable to the value obtained from Bremen drop tower experiments, ±0.002 g. A prolonged free-fall duration may enhance the low-gravity quality during the drop tower experiments.

New Paradigm on the Safety Check of Concrete Gravity Dams at Earthquake (중력식댐의 지진시 안전검토에 대한 뉴 패러다임)

  • Bae, Jung-Joo;Kim, Yon-Gon;Lee, Jee-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.6
    • /
    • pp.86-92
    • /
    • 2009
  • In the safety check of gravity dams at earthquake, there have been two types of analysis conducted simultaneously; one is stability analysis and the other stress analysis. But those are essentially the same calculation other than the former considers the dams rigid, while the latter considers the dams' dynamic characteristics which results in the amplification of response acceleration on the upper part of dam body. In this paper, the identity of those two methods is verified by example calculation in terms of stability check of gravity dam. It can be concluded that if stress analysis were performed, stability check of gravity dam could be accomplished with the results from stress analysis, removing unnecessary present dual calculation practice.

Behavior of small particles in isotropic turbulence in the presence of gravity (중력이 존재하는 등방성 난류에서 작은 입자의 유동)

  • Cho, Seong-Gee;Yeo, Kyong-Min;Lee, Chang-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2396-2400
    • /
    • 2008
  • The motion of small heavy particles in homogeneous isotropic turbulence in the present of gravity is investigated using Direct Numerical Simulations (DNS) at moderate Reynolds number. The Lagrangian velocity and acceleration statistics of particles and of flow for a wide range of Stokes number, defined as the ratio of the particle response time to Kolmogorov time scale of turbulence, were obtained for the direction of the gravity and normal direction, respectively. It is found that particles lose their correction faster than the case without gravity. Then, a significant increase in the average settling velocity was observed for a certain range of Stokes number. Our focus is placed on gravitational effect on very small particles. Our simulations show that as the Stokes number reduces to zero, their mean settling velocity approaches the terminal velocity in still fluid.

  • PDF

MILGROM’S LAW AND Λ’S SHADOW: HOW MASSIVE GRAVITY CONNECTS GALACTIC AND COSMIC DYNAMICS

  • Trippe, Sascha
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.3
    • /
    • pp.191-194
    • /
    • 2015
  • Massive gravity provides a natural solution for the dark energy problem of cosmology and is also a candidate for resolving the dark matter problem. I demonstrate that, assuming reasonable scaling relations, massive gravity can provide for Milgrom’s law of gravity (or “modified Newtonian dynamics”) which is known to remove the need for particle dark matter from galactic dynamics. Milgrom’s law comes with a characteristic acceleration, Milgrom’s constant, which is observationally constrained to a0 ≈ 1.1 × 10−10 ms−2 . In the derivation presented here, this constant arises naturally from the cosmologically required mass of gravitons like , with Λ, H0, and ΩΛ being the cosmological constant, the Hubble constant, and the third cosmological parameter, respectively. My derivation suggests that massive gravity could be the mechanism behind both, dark matter and dark energy.

Analysis of Inter-satellite Ranging Precision for Gravity Recovery in a Satellite Gravimetry Mission

  • Kim, Pureum;Park, Sang-Young;Kang, Dae-Eun;Lee, Youngro
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.243-252
    • /
    • 2018
  • In a satellite gravimetry mission similar to GRACE, the precision of inter-satellite ranging is one of the key factors affecting the quality of gravity field recovery. In this paper, the impact of ranging precision on the accuracy of recovered geopotential coefficients is analyzed. Simulated precise orbit determination (POD) data and inter-satellite range data of formation-flying satellites containing white noise were generated, and geopotential coefficients were recovered from these simulated data sets using the crude acceleration approach. The accuracy of the recovered coefficients was quantitatively compared between data sets encompassing different ranging precisions. From this analysis, a rough prediction of the accuracy of geopotential coefficients could be obtained from the hypothetical mission. For a given POD precision, a ranging measurement precision that matches the POD precision was determined. Since the purpose of adopting inter-satellite ranging in a gravimetry mission is to overcome the imprecision of determining orbits, ranging measurements should be more precise than POD. For that reason, it can be concluded that this critical ranging precision matching the POD precision can serve as the minimum precision requirement for an on-board ranging device. Although the result obtained herein is about a very particular case, this methodology can also be applied in cases where different parameters are used.

Natural User Interface with Self-righting Feature using Gravity (중력에 기반한 자연스러운 사용자 인터페이스)

  • Kim, Seung-Chan;Lim, Jong-Gwan;Bianchi, Andrea;Koo, Seong-Yong;Kwon, Dong-Soo
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.384-389
    • /
    • 2009
  • In general, gestures can be utilized in human-computer interaction area. Even though the acceleration information is most widely used for the detection of user’s intention, it is hard to use the information under the condition of zero or small variations of gesture velocity due to the inherent characteristics of the accelerometer. In this paper, a natural interaction method which does not require excessive gesture acceleration will be described. Taking advantages of the gravity, the system can generate various types of signals. Also, many problems such as initialization and draft error can be solved using restorative uprighting force of the system.

  • PDF

Effects of Microgravity on Vestibular Development and Function in Rats: Genetics and Environment

  • Ronca, April-E.;Fritzsch, Bernd;Alberts, Jeffrey-R.;Bruce, Laura-L.
    • Animal cells and systems
    • /
    • v.4 no.3
    • /
    • pp.215-221
    • /
    • 2000
  • Our anatomical and behavioral studies of embryonic rats that developed in microgravity suggest that the vestibular sensory system, like the visual system, has genetically mediated precesses of development that establish crude connections between the periphery and the brain. Environmental stimuli also regulate connection formation including terminal branch formation and fine-tuning of synaptic contacts. Axons of vestibular sensory neurons from grabistatic as well as linear acceleration receptors reach their targets in both microgravity and norm81 gravity, suggesting that this is a genetically regulated component of development. However, microgravity exposure delays the development of terminal branches and synapses in gravistatic but not linear acceleration-sensitive neurons and also produces behavioral changes. These latter changes reflect environmentally controlled processes of development.

  • PDF

Dealing with gravity on galactic scales

  • Trippe, Sascha
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.36.1-36.1
    • /
    • 2013
  • I present a simple scheme for the treatment of gravitational interactions on galactic scales. In analogy with known mechanisms of quantum field theory, I assume ad hoc that gravitation is mediated by virtual exchange particles - gravitons - with very small but non-zero masses. The scheme predicts the asymptotic flattening of galactic rotation curves, the Tully-Fisher/Faber-Jackson relations, the mass discrepancy-acceleration relation of galaxies, and the surface brightness-acceleration relation of galaxies correctly; additional (dark) mass components are not required. The well-established empirical scaling laws of Modified Newtonian Dynamics follow naturally from the model. The scheme I present is not a consistent theory of gravitation; rather, it is a toy model providing a convenient scaling law that simplifies the description of gravity on galactic scales.

  • PDF